
Lithuanian Journal of Physics, Vol. 56,  No. 3, pp. 149–163 (2016) 
© Lietuvos mokslų akademija, 2016

FEYNMAN RULES FOR WEYL SPINORS WITH MIXED DIRAC 
AND MAJORANA MASS TERMS

V. Dūdėnas and T. Gajdosik

Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: vytautasdudenas@inbox.lt; tgajdosik@yahoo.com

Received 23 May 2016; revised 8 July 2016; accepted 23 September 2016

We present a basic formalism for using the Weyl spinor notation in Feynman rules. We focus on Weyl spinors with mixed 
Dirac and Majorana mass terms. To clarify the definitions we derive the Feynman rules from the path integral and present two 
examples: loop corrections for a fermion propagator and a tree level analysis of a seesaw toy model.
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1. Introduction

Despite the tremendous success of the Standard Mod-
el (SM), there is no doubt that it cannot be a  com-
plete theory due to numerous experimental evidences 
for which the SM fails to find an explanation. One of 
these experimental evidences is the  observation of 
neutrino oscillations; for a short review of these ex-
periments see references [1, 2]. The oscillations prove 
that at least two of the  neutrinos have masses, but 
the original assumptions of the SM forbid these mass 
terms. So the neutrino sector and possibly the Higgs 
sector should be extended with some new degrees of 
freedom, i. e. new particles, to allow for the possibility 
that neutrinos have a mass.

The simplest “building blocks” for a  fermionic 
particle content are Weyl spinors. Thus the  model 
building is usually done in the Weyl spinor notation. 
However, if one looks at the  standard textbooks on 
quantum field theory (QFT), like [3, 4], one can see 
that it is unusual to find a proper treatment for Weyl 
spinors. This is in contrast to supersymmetry (SUSY) 
references [5, 6]. As a result, non-SUSY calculations 
using Weyl spinors are somewhat absent in the litera-
ture, although the  Weyl spinor formalism is known 
for an easier implementation on computer algebra 
systems [7]. This is not very surprising as we have 
only Dirac mass terms in the SM: the 4-component 
spinor formulation is way easier to deal with in this 
case. But considering a  possible Majorana neutri-
no [8], theories with mixed Majorana and Dirac mass 

terms for fermions become relevant; for a review of 
seesaw mechanisms see [9]. Then the  usual 4-com-
ponent spinor techniques are not so transparent to 
understand the  dynamics of mass mixing, whereas 
the  Weyl spinor notation gives a  natural diagram-
matic approach to these cases, as we will see in Sub-
section 4.4.

The difficulty of using Weyl spinors also arises from 
having many possibilities of different conventions. We 
present the definitions, which are essential to under-
stand these possibilities in Section 2. With the conven-
tions from [5] we rederive Feynman rules in order to 
make these conventions visible by using the path in-
tegral approach in Section 3. We focus on the exam-
ples that are relevant for studying a seesaw model. This 
includes loop corrections for a  Majorana particle in 
Subsubsection 3.4.2 and Subsection 4.3 and a diagram-
matic approach of the seesaw itself in Subsection 4.4.

2. Weyl spinors

2.1. Definitions

The Weyl spinor [10, 11] is the fundamental represen-
tation of the group SU(2). The Lorentz group is ho-
momorphic to SU(2)L ⊗ SU(2)R [12], where L and R 
are labels to distinguish the two subgroups. Particles 
fall into representations of these groups. A  particle 
which is in the fundamental representation of the L 
subgroup and in the  trivial representation of the  R 
subgroup is called a “left-handed” spinor and has left 
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chirality. The opposite is true for the “right-handed” 
spinor.

The two subgroups of the Lorentz group are related 
by Hermitian conjugation and by parity transforma-
tion [12]. So if we do a Hermitian conjugation or a pari-
ty transformation on a left-handed field, we get the field 
in the  right-handed representation. Both of the  two 
transformations flip the  representations L ↔  R, but 
the Hermitian conjugation also makes a charge conju-
gation. For more detailed discussion see [11].

A Weyl spinor is anticommuting, so the symbols 
that give the spinor metric are antisymmetric. Denot-
ing spinor indices by Latin letters, we write for left-
handed spinors

ξχ ≡ ϵbaξaχb , (1)

where ϵ is the  totally antisymmetric symbol, which 
takes a  left-handed spinor into its dual space by 
the definition [5, 13]

ξa ≡ ϵabξb, ξa ≡ ϵabξ
b, ϵabϵbc ≡ δa

c , (2)

where δ is the Kronecker symbol. Note that the com-
ponents of the spinor are Grassmannian (i. e. they an-
ticommute). The Hermitian conjugation puts a spinor 
into the  opposite handiness. The  right-handed 
spinor index is written as a Latin letter with a dot, so 
(ξa)† ≡ ξ†.a. Doing Hermitian conjugation of the scalar 
product of left-handed spinors

(ξχ)† ≡ (ϵbaξaχb)
† = (ξbχb)

† = χ .b
†ξ† 

.
b, (3)

and defining the raising and lowering of a right-hand-
ed index in a similar way as for the left-handed spinors

ξ .a ≡ ϵ .a 
.
bξ 

.
b, ξ .a ≡ ϵ .a

.
b ξ

 
.
b, ϵ .a 

.
b ϵ

 
.
b 

.
c ≡ δ.a

.c , (4)

we can write the definition of this metric:

ϵ12 = ϵ 
.
1

.
2 = ϵ21 = ϵ.

2
.
1 = 1 and ϵ21 = ϵ

.
2

.
1 = ϵ12 = ϵ.

1
.
2 = –1 . (5)

Since the fields anticommute, we get

ξχ ≡ ξaχa = –χaξ
a = –ϵacϵabχ

bξc = χaξa = χξ . (6)

We define a  summation convention for left-handed 
(undotted) spinor indices to sum from up to down. 
The  Hermitian conjugation reverses this summation, 
hence dotted indices are summed from down to up; to 
conclude,

ξχ = χξ ≡ ξaχa = χaξa, ξ
†χ† = χ†ξ† ≡ ξ†

 .aχ
† .a = χ†

 .aξ
† .a . (7)

2.2. Basic properties and the Lagrangian for Weyl 
spinors

The four components of a 4-vector can be written in 
the space of the direct product SU(2)L ⊗ SU(2)R. Since 
the  fundamental representation of SU(2) has 2  de-
grees of freedom, a 4-vector can be seen as the pro-
duct of two fundamental representations of SU(2), 
i. e. two Weyl spinors. Hence we can find a connec-
tion that transforms two spinors from these two Lor-
entz’s subgroups into a  four-component vector in 
the Minkowski spacetime. The connection is

ξ†–σ μχ = ξ.a
†–σ m .aaχa = –χaσ μ

a .aξ
 .a = –χσ μξ† (8)

with the definition

–σ m .aa = ϵabϵ  
 .a 
.
bσ μ

b 
.
b . (9)

These connections can be written as

–σm .aa = (I, – →σ) 
.aa, σ m

a .a ≡ (I, →σ).aa , (10)

where →σ is a 3-vector of Pauli matrices, and I is the 2 × 2 
identity matrix. The  product in Eq.  (8) is a  4-vector 
composed of two Weyl spinors. If we multiply it with 
some other 4-vector, we will get a Lorentz scalar,

ξ†(A · –σ)χ = ξ .a
†Am 

–σ μ .aa χa = ϵ.a 
.
bξ

†
.
b Aμ 

–σ μ .aa ϵab χ
b

= –χb Am σ
 m
b 

.
bξ

† 
.
b = –χ(A · σ)ξ† , (11)

where in the first and the last equality the summation 
convention is being used, which holds for these sig-
ma symbols as well. Assuming Aμ represents a vector 
field, Eq. (11) forms a valid spinor–vector interaction 
term in a Lagrangian.

Free field terms in the Lagrangian must be bilinear 
and Hermitian. Given Eq. (7), it is easy to write down 
the mass term for a single Weyl spinor. We can write 
the mass term for a single left-handed spinor ξL as

LM = ( )††

2
1= LLLL

M M ξξξξ +−L . (12)

The parameter M is made real by absorbing 
its phase in the  Weyl spinor. The  term defined by 
Eq.  (12) is called a  Majorana mass term. A  sin-
gle Weyl spinor with such a  mass term is called 
a  Majorana particle, since from this Weyl spinor 
one can construct a  four-component Majorana 
spinor. The factor of 2

1  is conventional, to avoid ad-
ditional numerical factors in amplitudes due to 
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the symmetry of this coupling. Another possible in-
variant mass term can couple two Weyl spinors:

LD = –mDξR†χL – m†
DχL†ξR. (13)

These terms are called Dirac mass terms. If two 
Weyl spinors share a Dirac mass term and do not have 
a  Majorana mass term, they are usually combined 
into one Dirac spinor, which is nothing more than 
two Weyl spinors with the same mass. Such particles 
are called Dirac particles. It is also possible for Weyl 
spinors to have all those mass terms, with the result 
that the Weyl spinors are not in their mass eigenstates. 
In this case, the diagonalized mass matrix in general 
will give two different masses for two different Weyl 
spinors. Those are often called two Majorana parti-
cles, since the diagonalized mass terms can be written 
as in Eq. (12). The difference between Dirac and Ma-
jorana fermions is discussed in [11].

From Eq.  (11) we see how a  vector connects to 
spinors. The partial derivative ∂μ is also a vector. So 
we can write Eq. (11) with ∂μ in place of the vector to 
form the kinetic term 

LK = iξL†–σμ∂μξ
L, (14)

which is Hermitian up to a  total derivative, which 
does not affect dynamics:

LK = iξL†–σ μ∂μξ
L = iξLσ μ∂μξ

L† + total derivative.         (15)

Note the chirality structure of this term. If we recover 
indices, we see that

–σ μ .aa∂μξa
L = ψ .a (16)

has only a dotted index, which means that acting on 
a spinor with σ∂ or –σ∂ gives a spinor that has the oppo-
site chirality than the spinor the operators were acting 
on.

The superscript L that we used in ξL and χL is just 
a name of the field. We stick to this convention for nam-
ing left-handed spinors with superscript L and right-
handed spinors with superscript R that correspond to 
particles and not to antiparticles. So ξL† is in the right-
handed representation, but it is purely our convention 
that we call ξL† an antiparticle. All the results that are 
obtained for the charge conjugated left-handed spinor 
apply for a right-handed spinor and vice versa. The chi-
rality is all what matters in taking care of the algebra in 
this formulation. Hence, keeping track of indices with-
out suppressing them is often useful in order to make 
less mistakes. Whenever we do not use spinor indices, 
recall the summation conventions shown in Eq. (7).

A lot of spinor algebra relations consistent with 
these definitions can be found in [5]. For our pur-
pose, we only need

[σ m–σ ν + σ ν –σ μ ]α
β = 2g μνδα

β , (17)

[ –σ μσ ν +  –σ νσ μ ]
.α.
β = 2g μνδ .α.

β
  . (18)

The spinor indices are suppressed using the sum-
mation convention of Eq. (7). g μν is the usual Minkows-
ki metric, taken to be diag(1,–1,–1,–1). When con-
necting these symbols with spinor indices, one can 
connect only barred to unbarred sigmas. As we will 
see, this knowledge helps in choosing the right rule 
for writing amplitudes.

3. Propagators

When dealing with the path integral formulation, it is 
convenient to go to the momentum space. For this we 
need to define Fourier transformations of the fields. 
For the left-handed Weyl spinor ξL we define

 
,             (19)

where

 
, (20)

and D is the  number of spacetime dimensions. In 
the spirit of dimensional regularization D is set to 4 at 
the end of the calculations. The Dirac delta function 
in D dimensions is represented by the integral

. (21)

Using Eqs.  (19) and (21) in the  action S  =  ∫xLK, 
with LK given in Eq. (14), we arrive at the action in 
the momentum space:

 
.  (22)

The Majorana mass term in the momentum space 
becomes

SM = ∫x
{MξL(x)ξL(x) + M†ξL†(x)ξL†(x)}

= ∫p
{MξL(–p)ξL(p) + M†ξL†(–p)ξL†(p)} . (23)

For a Dirac particle, where we have 2 Weyl spinors, 
we could define L and R fields to Fourier transform 
in the same way. Then we would arrive at a Fourier 
transformed action, where all fields are expressed in 
the same p direction. But to have the same appearance 
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of the p dependence as in the Majorana case, we rather 
keep a definition for all left-handed fields the same, i. e. 
we require ξR† to Fourier transform the same as ξL, and 
define

ξR(x) = ∫ke
+ikxξR(k),   ξR† (x) = ∫ke

-ikxξR†(k) .            (24)

For two Weyl spinors ξL and ξR, sharing the same 
Dirac mass, we have the momentum dependences

SD = ∫p{ξL†(p) (–σ · p)ξL(p) + ξR†(–p) (σ · p) ξR(–p)

–mDξR†(–p) ξL(p) –m†
DξR(–p) ξL†(p)} . (25)

Note that we do not have the  freedom of choos-
ing the  definition of the  Fourier transformation in 
the Majorana case, since we have twice less degrees 
of freedom.

Eq. (25) can also be written in an alternative form 
as is evident from Eq. (15). We have

∫p ξ
L†(p) (–σ · p) ξL(p) = –∫pξ

L(p) (σ · p) ξL†(p)

= + ∫pξ
L(–p) (σ · p) ξL†(–p) . (26)

Using Eq. (26), the action of Eq. (25) can be written as

SD = ∫p{ξL(–p) (σ · p) ξL†(–p) + ξR(p) (–σ · p) ξR†(p)

– mDξR†(–p) ξL(p) – m†
DξR(–p) ξL†(p)} . (27)

As we will see, the  fact that we can write the ki-
netic term for a  single Weyl spinor in two different 
ways (Eqs.  (25) and (27)) results in the  freedom of 
choosing one of two rules for a single propagator line.

We introduce source functions to the Lagrangian 
density in the position space as

JL(x) ξL(x) + JR(x) ξR(x) + H.c. (28)

and we define the Fourier transformation of the source 
functions for left and right fields:

JL(x) = ∫
k
e+ikxJL(k), JR(x) = ∫

k
 e-ikxξR(k) . (29)

The Fourier-transformed version of Eq. (28) then 
becomes

JL(p)ξL(p) + JR(–p) ξR(–p) + JL†(p)ξL†(p) 

+ JR†(–p) ξR†(–p) . 
(30)

The definition for the  derivation with respect to 
the source function is

 
.
 

(31)

Since all Weyl spinors anticommute, this is true for 
the sources as well, i. e. {Ja, Jb} = {Ja, J† 

.
b} = {J† .a, J† 

.
b} = 0. 

It also holds for their derivatives.

3.1. Propagator definitions

A propagator is a 2-point correlation function. Given 
the path integral Z(J) = ∫[Dϕ]eiS(J), where [Dϕ] stands 
for a  formal measure of all possible field configura-
tions, and the action S(J) = ∫x(L + Jϕ), the 2-point cor-
relation function of some scalar field ϕ is given by

 (32)

Since the  correlation functions are evaluated at 
vanishing sources and the path integral is a function 
of sources, we abbreviate

Z ≡ Z(J, J†) and Z| ≡ Z(J, J†)|J=J†=0 . (33)

Modifying the  propagator definition for Weyl 
spinors poses some complications mainly because 
of their anticommutativity properties. We consider 
a left-handed spinor ξ with an effective action S(J, J†) 
= ∫x(L + Jaξa + ξ .a

† J .a) . The product of Jξ = ξJ is invariant, 
but there is an ambiguity in the sign if we differentiate 
with respect to the source function. Since we defined 
+Jaξa in the action, we have the property

  
, (34)

where the arrow indicates the direction of acting. This 
arrow is introduced in order to compare the defini-
tions with [5], where this opposite direction of acting 
for source derivatives is frequently used. Remember-
ing the summation convention for dotted indices, we 
have

 
. (35)

Given this, one can relate the definitions for prop-
agators using source derivatives acting only from 
the left, with the definitions for propagators given in 
[5]. They are:
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(36)

             
(37)

              
(38)

        

(39)

We use the full definition for propagators, where all 
corrections for a propagator are encoded in the path 
integral Z. The definitions for propagators in [5] are 
presented in the free field theory only, but the struc-
ture is the same. The only difference is the factor Z–1 in 
front of the expression, which we need to include to 
keep the right normalization of correlation functions 
in the presence of higher order corrections.

3.2. Propagator in momentum space

Since the  momentum space is natural for Feynman 
diagram calculations, we will define the  Fourier-
transformed version of the  previous propagator ex-
pression.

First consider a  propagator for the  left-handed 
field ξ of the form

     

(40)

We first take a  look how derivatives with respect 
to source functions transform under Fourier trans-
formations. Making use of the  Fourier transforma-
tions defined in Eq. (19) and the chain rule for func-
tional derivatives, which is just a  generalization of 

ji

j
j

i yx
y

x ∂
∂

∂

∂

∂
∂ ∑= , we get

 
. 

(41)

One can check that for the opposite chirality we 
have

 
. (42)

Putting Eq. (41) into Eq. (40) we get

 
(43)

The propagator depends only on the  spacetime 
difference x–y and not on x and y separately. So 
the propagator should Fourier transform with a sin-
gle factor of x–y. By rearranging exponents from 
Eq. (43) and adjusting the signs of the momentum to 
have the e–ip(x–y) factor in front, we get

 

(44)

This expression still depends on the  spacetime 
point y, because we did not yet restrict the coordinate 
space propagator to depend only on the  spacetime 
difference x–y. But the  translational invariance of 
the action always gives this spacetime dependence for 
correlation functions, hence the correlation function 
is a translational invariant itself. To preserve this sym-
metry we need to have p΄ = p in the momentum space; 
the additional exponent in the brackets of Eq. (44) will 
just give the identity all the time. There is also an ad-
ditional integration ∫p΄ which might seem strange at 
first glance. But actually, this integration is what is 
needed to set p΄ = p. To understand this, consider that 
we have two derivatives with respect to sources. Since 
the sources are set to zero, the terms that contribute 
from the  action must also come as bilinear func-
tions of sources. After differentiation with respect to 
the sources we should have two Dirac delta functions, 
recalling the definition of differentiation in Eq. (31). 
Because we have an action in the momentum space as 
∫ωL(ω), we have only one integration measure coming 
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from the action, which uses one Dirac delta function 
to fix one momentum. So the integration ∫p΄ is need-
ed to fix the other free momentum. Hence ṕ  serves 
just as a dummy integration variable that matches di-
mensions and sets ṕ   =  p at the  end of the  algebra. 
As a result of these considerations, we can safely omit 
the  exponent in the  brackets (e–iy(p–p΄)→1) from our 
definitions for propagators. Furthermore, since we 
always have ṕ  = p in the end, there is no difference 

on what source function we put this integration varia-

ble: we can change  in 

Eq. (44) without any consequence. However, the signs 
of the momenta depend on the choice of the Fourier 
transformation.

We define Fourier transformations for 2-point 
correlation functions to be

        (45)

and

 ,        (46)

where FT(p) labels that the Fourier transformed ver-
sion of 〈0|ξa(x) ξb(y)|0〉 depends only on the momen-
tum p. The  propagators in Eqs.  (36) and (39) have 
an  opposite chirality structure compared to those 
of Eqs.  (45) and (46). We defined that fields that are 
of opposite chirality to each other transformed with 
the  opposite momentum sign in Eq.  (19). In order 
to be consistent with this definition, we have Fou-
rier transformations for the  propagators in Eqs.  (36) 
and (39) with the  opposite momentum sign rela-
tive to Eqs. (45) and (46). This is also consistent with 
momentum dependences in the  free field actions of 
Eqs. (22), (23), (25) and (27). Given these definitions, 
we get the expressions for all four types of propagators:

 ,        (47)

 ,  (48)

 ,     (49)

 
.       (50)

Now we take two Weyl spinors, ξL and ξR, with 
the  same Dirac mass that couples them together. 

Since we introduced a Fourier transform in such a way 
that ξL transforms the same as ξR†, we can already write 
propagators for this Dirac particle by just relabelling 
fields and without changing momentum dependences:

 ,    (51)

 
,    (52)

 
,      (53)

 
.      (54)

These propagators can be written differently, for 
example, one can use the  propagator 〈0|ξL

aξ .a
L†|0〉FT(p) 

instead of 〈0|ξL†.aξLa|0〉FT(p). The changes should be clear 
from Eqs. (47) to (50).

3.3. Propagator for a free field

Considering free fields, it is always possible to shift 
fields in the action in such a way that the field depend-
ent part is separated from the source dependent part. 
To be more precise, consider we have a field ξ and we 
shift it to ξ΄ such that the path integral becomes

Z(J) = ∫[Dξ]eiS(ξ,J) = ∫[Dξ’]eiS(ξ )́+iS(J) = NeiS(J) ,

N = ∫[Dξ ]́eiS(ξ’) . (55)

The integration over fields gives just a  constant 
factor N to the path integral Z(J).

Now let us consider the  possible shift for Weyl 
spinors. We use left- and right-handed fields ξL and ξR 
sharing a Dirac mass term. Then the fields are shifted 
by a linear combination of sources, i. e. the left-handed 
field will be shifted by a linear combination of left- and 
right-handed sources. From Subsection 2.2 we know 
that constructing something that is left-handed from 
an originally right-handed spinor can be done with 
σp. It is easier to see this if we restore spinor indices. 
When two spinors have only a Dirac mass, the shift for 
the left-handed field will have the form

ξa
L(p) → ξa

L(p) + x · (σp)a .a J
R .a(–p) + y · Ja

L(p) ,         (56)

where x and y are just some unknown constants. 
The minus sign in the momentum dependence comes 
from the fact that the propagation of the right-hand-
ed field in the negative time direction is the left-hand-
ed field in the positive time direction. The important 
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thing is keeping track of the chirality. Having in mind 
our labelling of R and L, the shift for ξR is the same as 
for ξL except for interchanging the labels R ↔ L and 
the connection σ → –σ due to the opposite chirality of 
ξR. In the case of one left-handed spinor with the Ma-
jorana mass only, we can identify R → L† in Eq. 56).

It is possible to calculate the  coefficients x and y 
by straightforwardly inserting the shift, Eq. (56), into 
the action and requiring terms that couple sources with 
fields to cancel. However, since this form of the shift 
includes the transformation between the left and right 
chiral states, it makes sense to combine the  left and 
right chiral states into one 2-component vector, where 
the components are Weyl spinors. This is just the usu-
al 4-component spinor in the  chiral representation. 
How this is done one can find in the appendix of [5]. 
The source dependent part of the action for two Weyl 
spinors sharing a Dirac mass term is

(57)

Remembering the  definitions of propagators in 
Eqs. (51) to (54) we get

 
, (58)

 , (59)

 , (60)

 . (61)

Comparing Eq.  (57) with Eqs.  (25) and (27), we 
see that the same action can be written as

(62)

Eqs.  (58) and (59) can be written in alternative 
forms by changing p  →  –p and exchanging σ ↔  –σ. 
Hence we conclude that in this notation

 is equivalent to   . (63)

If we have a  Weyl spinor with a  Majorana mass 
term, the action can be written as

 

(64)

It is obvious that the same equivalence for propa-
gators shown in Eq. (63) holds too. Using this action 
we get only two independent propagators instead of 
four, but all four forms, as seen from Eqs. (47) to (50), 
are present.

3.4. Propagator for the interacting theory

In the previous section we saw the  free field terms 
of the action. If we consider an interacting theory, 
we have an additional term Sint and the path integral 
becomes

Z ~ eiSint+iSfree = eiSinteiSfree . (65)

Most of the models in particle physics are built 
to describe the interactions as a perturbative series 
of this expression. The  only case when the  pertur-
bation theory is not applicable is when we have 
a bound state. Since we are interested in models that 
should describe interactions with neutrinos (which 
do not participate in such states), treating iSint as 
a  perturbation is general enough. The  free field 
term is expressed in terms of the source functions, 
so the interaction term then can be expressed as de-
rivatives with respect to sources acting on the  free 
field action: Sint is promoted to an operator Ŝint. Then 
the path integral becomes

 
.      (66)

Given the  Lagrangian of a  theory and using 
the definitions for propagators of Eqs.  (47) to (50) 
or Eqs.  (51) to (54), we can calculate corrections 
for the  tree level propagators to the  desired order. 
The first term of this expansion is just a free field ap-
proximation that we discussed in the previous sub-
section. The second term becomes zero after setting 
sources to zero as will become clear after we work 
out the expressions for iŜint. The third term in the ex-
pansion gives a loop correction for the propagators. 
In the  following subsection we summarize the  ex-
pressions of iŜint for possible interactions with Weyl 
spinors.
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3.4.1. Vertices

We will consider possible couplings that appear in 
renormalizable models in four dimensions. We will 
leave, however, the letter D in the exponents of phase 
space integrals, denoting the number of dimensions 
as a free parameter in our expressions. This empha-
sizes that dimensional regularization can be used be-
fore setting D = 4.

In four dimensions a spinor can couple to a vec-
tor or a  scalar. The  spinor–vector coupling term in 
the action is

 (67)

This is the  same term written in two different 
ways, where g is some coupling constant. We promote 
this term to an operator iŜV

int by changing the  fields 
to the  corresponding derivatives with respect to 
the sources. By making use of Eqs. (41) and (42) we go 
to the momentum space. The expressions for iŜint are

 

(68)

or

 
(69)

where we restored spinor and vector indices. We 
see that there is a  freedom in choosing the connec-
tion between the vector and the spinors, i. e. we can 
choose either –σ or –σ to write down the  same ver-
tex. The minus sign for the momentum comes from 
the definition of the Fourier transformation present-
ed in Eqs. (19) and (24).

The spinor scalar coupling can come in two forms:

 (70)

Here the first term couples some scalar ϕ to the same 
Weyl spinor and the second term couples it to two dif-
ferent spinors. We will always introduce the factor 2

1  
in the definition of the coupling of a scalar with two 
spinors of the same field in order to cancel additional 
combinatorial factors that appear due to the symmetry 
of this term. We take ϕ to be a complex scalar for gen-
erality, so that we have a complex coupling constant.

Using Eq.  (41) we get iŜS
int for the  scalar case in 

terms of the source functions

 
(71)

or

 
(72)

The Hermitian conjugate of iŜS
int just gives the Her-

mitian conjugate coupling constants and opposite signs 
for the  momentum dependences in the  source func-
tions.

3.4.2. The spinor–vector loop

Now we can calculate corrections to all propagators de-
fined in Eqs. (51) to (54). We see that the term linear in 
iSint vanishes for a propagator after setting sources to zero, 
since all possible interaction terms acting on the  free 
field part of the path integral will leave an odd number 
of sources. Therefore the loop correction comes from 
( )2ˆ

2
1

intSi(iŜint)
2 in Eq. (66). To see how the path integral for-

malism applies, we work out the example for the loop 
correction to the propagator defined in Eq. (51).

Consider the  loop correction to a propagator for 
a fermion with only a Majorana mass and a vector bo-
son in the loop. Let us call the spinor ξL and the vec-
tor Aμ. The  free field term for this fermion is given 
in Eq.  (64). The  interaction operator then is either 
Eq. (69) or Eq. (68). Let us use the form of Eq. (68). 
Then the interaction operator to order O(g2) is

. 

(73)

We abbreviate the fermion propagators of the free 
field as

 
, (74)
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suppressing the  spinor indices. We will use the  let-
ter  G as an abbreviation for the  boson propagator, 
which is an even function of the momentum:

G(p) = G(–p) . (75)

Let us take Aμ to be neutral. In this context, it is 
enough to say that a neutral field is self-conjugate, i. e. 
it is its own antiparticle. On the Lagrangian level we 
have a factor of 

2
1  in front of the bilinear terms due 

to this extra symmetry, hence the free field term for 
a neutral boson after completing the squares is

 
. (76)

For the propagator of the Aμ field we write GAμν(p), 
which is also symmetric under μ ↔ ν.

With the definition of the propagator in Eq. (51), 
the correction to one loop order is

         

(77)

where the number in the brackets of the superscript 
denotes the order of the correction. In Eq. (77) we 
have 8 derivatives with respect to the sources in to-
tal. Since the  propagator is evaluated at vanishing 
sources, only the  term  will contribute from 
the expansion of the free field part of the path inte-
gral. Looking at Eq. (73) we see that in Eq. (77) we 
have derivatives with respect to 3 JL†s, 3 JLs and 2 JAs. 
The  only non-vanishing terms are those that have 
the  same number of sources. These contributions 
from  are

  or
 (78)

where w1,  w2... are the  momenta of different pairs 
of source functions. All the  indices are contracted. 
The  momentum dependences of the  source func-
tions can be seen in Eqs. (76) and (64). Acting with 
source derivatives we get 8 Dirac delta functions that 
are integrated over with the  momenta w1, w2.... In 
the end one arrives at an expression that can be dia-
grammatically expressed as a Feynman diagram.

To see explicitly how this is done, we take the first 
term of Eq. (78) as an example:

 . 
(79)

The easiest start is to differentiate this term first 

with respect to the  vector bosons, since it can be 

done independently: . Remembering 

the definition of differentiation, Eq. (31), we get

= (2π)Dδ( p2 + k2)GAμν(k2). 

(80)

Differentiating in the  same manner with respect 
to the  spinor sources from Eq.  (73) and integrating 
with respect to the momenta w2, w3, and w4, we are 
left with 6 Dirac delta functions in total (2 coming 
from Eq.  (73)). The  integrations over all momenta, 
coming from iSint in Eq. (73), will connect these mo-
menta to preserve momentum conservation. The last 
integration over p  ́completes it with setting p  ́= p as 
discussed in Subsection 3.2. П, shown in Eq. (79), be-
comes the sum of

 , 

(81)

 
,
            

(82)

 ,  (83)

and

 .  (84)

These terms are represented as Feynman dia-
grams in Fig. 1. Arrows on the lines show the flow of 
the left chirality, i. e. they point from dotted to un-
dotted indices. The  momentum flow is taken from 
left to right as shown with additional arrows near 
the momenta.
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The amplitudes in Eqs.  (81) and (82) are the  so-
called vacuum bubbles. They are cancelled by Z–1 to 
all orders. To prove it for this order, see the  O(g2) 
of Z at vanishing sources. By the same argument of 
matching the number of derivatives with the number 
of sources we get

 . (85)

The only non-vanishing terms from  
are

   and

(86)

Working out the first term, one arrives at the terms 
that are shown in the brackets of Eqs. (81) and (82).

There is also an interesting factor of 2
1  in Eqs. (81) 

and (82), which stands for the symmetry factor of these 
diagrams, i.  e. the diagram is identical if you change 
places of two identical fermion propagators or places 
of two vertices. Also, there is a minus sign in Eq. (82). 
This is due to the anticommutativity of fermions: each 
closed fermion loop gives a  relative minus sign to 
the amplitude. Just as expected, the symmetry factors 
and the rule for closed fermion loops are the same as in 
the usual Feynman diagram calculus.

An interesting diagram is drawn from Eq.  (83), 
which is a  tadpole connected to a  propagator. Note 
that it has a minus sign due to the closed fermion loop. 
This already looks strange from a  physical perspec-
tive: the  gauge boson of momentum 0 is vanishing 
into the vacuum. Since a vector has a Lorentz index, 
we might worry about the Lorentz invariance if this 
would contribute. But it does vanish: the propagator –P(k) is an odd function of k, so the term  
gives 0 when integrating over all values of the momen-
tum. Note that the propagator PM(k) is even: a tadpole 
diagram appearing with this propagator would give 
a contribution. This cannot happen with a gauge bo-
son, but it appears in the  interaction with scalars as 
will be discussed in Subsection 4.3. So we are left only 
with Eq. (84) contributing to the one loop correction.

        
−−−−−→pξLa ξL†ȧ

  or          or  

.

.

ξ
L†
ȧ ξR ḃ

                            

Fig. 2. Feynman diagrams and rules for propagators. 
These are all possible diagrams for propagators of Weyl 
spinors. The corresponding Feynman rule is written un-
der each diagram. For the  propagators shown in (a, b) 
one can choose between two possible rules. The  mass 
term can be either Dirac or Majorana in these rules, but 
for the Majorana case one has to identify ξR = ξL† in (c, d). 
Propagators in (c, d) are even functions of the momen-
tum, hence the direction of the momentum flow is irrel-
evant and not shown in the diagrams.

4. Feynman rules

4.1. Propagators and mass insertions

All the definitions in this paper are consistent with 
the definitions of [5]. To present Feynman rules for 
Weyl spinors, one has to include a chirality flow in 
the diagram. An arrow on the propagator line is de-
fined to show the direction in which the left chirality 
flows, i. e. the arrow is directed from the dotted in-
dex towards the undotted index. Whenever a chiral 
symmetry breaking term appears (such as a mass), 
the directions of arrows indicate this by showing op-
posite directions in the diagram. This is in contrast 

Fig. 1. Feynman diagrams showing the terms in Eqs. (81) 
to (84). The bubbles B1 and B2 shown in (a, b) are can-
celled by the  normalization of the  path integral. T, 
the tadpole connected to the propagator, shown in (c), 
vanishes. A, shown in (d), is the contributing loop cor-
rection to the propagator.

(a) (b)

(c) (d)
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with Feynman diagrams for 4-component spinors, 
where the  direction of an arrow is defined as fer-
mion flow, which has to be preserved all the time in 
order to have fermion number conservation. Feyn-
man rules for propagators of Weyl spinors are shown 
in Fig. 2.

We first consider the propagators shown in Fig. 2(a, 
b). We draw an additional arrow near the  propaga-
tor line showing the momentum flow. The definition 
of momentum flow is crucial for these propagators 
in order to assign the correct rule. To see why this is 
the case, recall Eq. (63). We have two alternative forms 
of writing down the expression for the same propaga-
tor and this form is related with the direction of mo-
mentum. This freedom can be understood comparing 
the  two equivalent expressions for the  same action 
shown in Eqs. (25) and (27) in terms of Weyl spinors 
or in Eqs. (57) and (62) in terms of sources functions. 
These alternative forms of writing down the same ac-
tion are reflected in the rules shown in Fig. 2(a, b). We 
can go from one form to the other by either flipping 
the arrow of the propagator, or by changing the direc-
tion of the  momentum. For Fig.  2(a), where the  left 
chirality goes from left to right, we have the propagator 
~ σp or by changing p → –p we have ~–σp. Equivalently, 
if we flip the direction of chirality as in Fig. 2(b), we 
have the propagator ~–σp or ~–σp.

The propagators of Eqs.  (60) and (61), shown in 
Fig. 2(c, d), exist only if the mass term is not zero. These 
propagators are even functions of the  momentum, 
hence the  direction of the  momentum is not impor-
tant. Since the mass term for fermions couples different 
chiral states, the direction of the arrow is not preserved 
along the propagator line for these propagators.

All the rules for propagators shown in Fig. 2 are 
obtained using the action of Eq. (57) and the defini-
tions of the propagators from Eqs. (51) to (54). Al-
ternatively, one could start from a chirality preserv-
ing action, where the mass terms are zero, and treat 
the mass terms as couplings. Then we have massless 
propagators as the first approximation in Fig. 2(a, b). 
Taking a Dirac mass term, Eq. (13), as a coupling, we 
get the Feynman rules shown in Fig. 3 with m = mD. 
Making an infinite sum of even numbers of mass in-
sertions into the  massless propagator for the  Weyl 
spinor, we recover the mass term in the denomina-
tors of the propagators shown in Fig. 2(a, b). Making 
an infinite sum of odd numbers of mass insertions 
gives rise to the propagators of Fig. 2(c, d). If we have 
a Majorana mass as in Eq. (12) instead, we will have just 
the same rules of Fig. 3 with m = M. Making the infi-
nite sums of these insertions will give all the same rules 
shown in Fig. 2 identifying ξR = ξL† and m = M.

     –imδb
a                           –im†δ ·b.a

Fig. 3. Mass insertion diagrams and rules. These diagrams 
correspond to mass terms if they are treated as couplings. 
These rules can be used for either a Dirac or a Majorana 
mass term in the same way, i. e. m = mD if we have a Dirac 
mass term as in Eq. (13) and m = M if we have a Majorana 
mass term as in Eq. (12). The direction of arrows shows 
the chirality structure of the mass term. The momentum 
conservation along the line is understood. The direction 
of the momentum flow is irrelevant just as in Fig. 2(c, d).

4.2. Vertices

To define the set of rules for interactions with Weyl 
spinors, one just needs to understand the  chirality 
structure of the interaction terms. The scalar–spinor 
interaction term changes chirality. Hence the arrows 
of the  spinor lines point in opposite directions in 
the diagrams as shown in Fig. 4(b, c). The momenta 
are defined to flow into the vertex and the Dirac delta 
function of these momenta gives the momentum con-
servation at the vertex. In Fig. 4(b) we define the cou-
pling constant y to come from the term that couples 
two left-handed spinors as in Eq. (70). Figure 4(c) is 
just the Hermitian conjugate of Fig. 4(b) with a cou-
pling y†. If the scalar field is real, then one can define 
the phase of the spinors in such a way that y† = y.

       (a)        (b)

.

.

   
.

.

igσδ(∑i pi) or –ig–σδ(∑i pi) iyδ(∑i pi) 

       (c)

.

.

              iy†δ(∑ipi)

Fig. 4. Feynman diagrams and rules for vertices. The cor-
responding Feynman rule is written under each diagram. 
There are two possible rules for a vertex with a vector bo-
son, as shown in Fig. 4(a). All momenta are defined to 
flow into the vertex, so that δ(∑ipi) gives momentum con-
servation. The rules for vertices with scalars are shown in 
Fig. 4(b, c).

(a) (b)
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The spinor–vector interaction term, shown in 
Eq. (67), preserves chirality. Hence arrows on the prop-
agator lines must show in the same direction for this 
coupling. There is also a freedom in choosing the con-
nection: either σ or –σ, as seen in Eq. (67). These two rules 
are related by a relative minus sign. The rules, shown in 
Fig. 4(a), are consistent with this sign convention:

Lint = +gξLσ · VξL† = –gξL†–σ · VξL . (87)

Note that we also have a freedom in writing the ex-
pression for the  propagator as shown in Fig.  4(a, b). 
But σ can only be connected with –σ and vice versa as 
discussed in Subsection 2.2. Once we choose a rule for 
the vertex, we cannot choose the form of the propaga-
tor freely anymore. That means, if we choose a vertex 
as ~–σ, both propagators must be ~σ to form a product 
~σ–σσ. We illustrate this by an example in the next sub-
section.

4.3. Using Feynman rules: loop correction

To check the consistency of the rules and to present 
an example of using them, we derive Eq. (84) directly 
from the  diagram shown in Fig.  5(b). This example 
helps to understand the  property in Feynman rules 
for Weyl spinors that is not apparent in the  usual 
Dirac spinor notation: the  one to two correspond-
ence between the  diagram and the  rules appearing 
in Fig. 4(a), Fig. 2(a) and Fig. 2(b). We use the same 
abbreviations for the  free field propagators as in 
Eqs. (74) and (75). Taking the momentum flow from 
left to right, the  rules presented in Fig.  2(b) tell us 
that we can choose either –P(p) or P(–p) for each fer-
mion line. The rules for the vertex, shown in Fig. 4(a), 
give us the freedom to choose between iσgδ(∑ipi) and 
–i–σgδ(∑ipi). As noted at the end of the previous sub-
section, we can connect only barred to unbarred sig-
mas. We integrate over internal momenta of propa-
gators which use up the delta functions that enforce 
momentum conservation at each vertex. So we are led 
to two possible ways to write this correction:

         (88)

or

  (89)

Because P and –P are odd functions of the momen-
tum, П and –П are also odd functions. If we recover 
contracted indices, one can see that the functions П 
and –П differ only by the index structure and this in-

dex structure is the same as for P and –P, respectively. 
The  diagrams for these functions are presented in 
Fig.  5. The  propagator shown in Fig.  2(b) together 
with its correction in Fig. 5(b) can be written as

–P(p) + –П(p) or – (P(p) + П(p)), (90)

whereas the diagram in Fig. 5(a) leads to a correction 
for a propagator shown in Fig. 2(a):

P(p) + П(p) or – (–P(p) + –П(p)) . (91)

The corrections do not spoil the  index structure 
and the  properties under p→–p for correlation func-
tions, which just means that we managed to consist-
ently define Feynman rules. The freedom of choosing 
one of two rules for a vertex shown in Fig. 4(a) and for 
propagators shown in Fig. 2(a, b) at one loop order is 
reflected by the two functions for the same diagram as 
shown in Fig. 5. This justifies the freedom of choosing 
one of the two rules for the same propagator shown in 
Fig. 2(a, b) and for the vertex shown in Fig. 4(a) at one 
loop order.

(a)        (b)

П(p) or –П(–p)  –П(p) or П(–p)

Fig. 5. Gauge loop corrections for the propagators shown 
in Fig. 2(a, b), respectively.

As discussed in Subsection 3.4.2, the vacuum bub-
bles do not contribute to the corrections. Also, the tad-
pole with a gauge boson connected to the propagator 
gives a vanishing result. The scalar tadpoles shown in 
Fig. 6 do not vanish. Usually one requires as a renor-
malization condition that these tadpoles cancel to-
gether with the  tadpoles and counterterms arriving 
from corrections to the vacuum expectation value of 
the scalar field. However, it is important to note that 
other possibilities in defining renormalization con-
ditions exist and, in principle, tadpoles can also be 
taken into the definition of a propagator.

(a)   (b)

Fig. 6. Tadpole diagrams that give non-vanishing results.

The corrections for a single propagator shown in 
Fig. 2(a) has four possible forms. This is because there 
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are four forms of propagators in the Weyl spinor no-
tation, hence we are led to four possible combinations 
of external legs shown in Fig. 7.

Fig. 7. All possible diagrams for correcting the propaga-
tor shown in Fig. 2(a). 1PI stands for the sum of all one 
particle irreducible diagrams.

4.4. Using the Feynman rules: example of the Seesaw

The seesaw mechanism [14–17] is an illustrative 
example for the  usage of the  sets of rules for Weyl 
spinors shown in Figs.  2,  3. Instead of looking at 
the seesaw extension of the SM, we consider a simpli-
fied toy model. We take two Weyl spinors ξL and ξR 
coupled with a Dirac mass term and we give a large 
Majorana mass to ξR, taking M>>    mD:

 .        (92)

We treat the Majorana mass term as a first approx-
imation for the mass of ξR and the Dirac mass term 
as a coupling, shown in Fig. 3, which means that to 
the  first approximation ξL is massless and does not 
have propagators like in Fig. 2(c, d).

The mass term mD mixes the fields ξL and ξR. To 
estimate the size of this mixing consider the diagram 
shown in Fig. 3(a), which represents this mixing term. 
We can interpret this diagram as the  field ξL trans-
forming into ξR with the coupling of (–im) = (–imD). 
We take the positive momentum direction and assign 
propagators to external lines for ξL as in Fig. 2(a) with 
m2 = 0 and for ξR as in Fig. 2(b) with m2 = M2. This 
correction reads

 
,     (93)

where we used the property presented in Eq. (18) to 
get (p  ·  –σ)  (p  · σ)  =  p2. Eq.  (93) is an expression for 
the propagator for ξR, of the form shown in Fig. 2(c) 
with m  =  M and an additional factor of . This 
means that the propagating field ξL transforms into ξR 
by a fraction ~ .

We further explore diagrams that give correc-
tions to the ξL propagator. The correction arising from 

the Dirac mass term for a propagator of ξL is shown in 
Fig. 8(a). The diagram of Fig. 8(b) gives rise to a prop-
agator of a form shown in Fig. 2(d) that is absent in 
the case when the Dirac mass term is neglected. Con-
sidering the case, where ξL is near its mass shell, we 
have p2 <<  M2. The diagram in Fig. 8(b), using the rules 
from Figs. 2, 3, gives

 
,
 

(94)

which is a new propagator for ξL. This expression is 
the first term in the infinite sum of

 , (95)

which we get when considering infinite copies of 
this diagram. Note that we have an opposite sign to 
the normal convention for this propagator.

ξL ξR ξL

ξL ξR ξL

Fig. 8. Mass insertion diagrams for correcting the prop-
agator of ξL.

Taking the diagram shown in Fig. 8(a) and using 
p2 <<  M2 we get

 . (96)

Equivalently, considering the infinite sum of cop-
ies of this diagram, one gets

 . (97)

From this propagator, we see that the  field is 

rescaled by a factor of .

Having the  result from Eq.  (93), we can define 
a new field, to include the admixture of ξR with a frac-
tion of – :

 . (98)

(a) (b)

(c) (d)

(b)

(a)
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Then the transformation for  reads

 
. (99)

These fields are normalized up to the first order in 
. This is evident from Eq. (97), which says that ξL 

rescales with a factor of

 . (100)

One can also check that inserting these redefini-
tions leaves the kinetic term unchanged up to the first 
order in . Inserting the inverse transformation

 
, (101)

 (102)

into Eq. (92) we get

 . 
(103)

We see that the phase of ξL 
new should be redefined 

in order to get the right sign for the mass term. This 
redefinition of the phase to get a positive mass term in 
the Lagrangian also cancels the minus sign in Eq. (95), 
which means that we recover the normal convention 
for a propagator. The phase of the parameter  can 
also be absorbed into the field definition. So the final 
mass term for the redefined fields can be written as

 , 
(104)

where mξ and M are real Majorana masses. By these 
redefinitions, we get rid of the  mixing between 
the two spinors up to the first order in . The mass 
parameter mξ is the same as in Eq. (94).

5. Conclusions

The main confusion in using Feynman rules in 
the Weyl spinor notation comes from keeping track 
of definitions. We see that in the Weyl spinor formu-
lation we have an additional freedom of choosing 
between two equivalent rules for the same diagram. 

This one-to-two correspondence between diagrams 
and rules, as we see in Figs. 2 and 4, makes it even 
more complicated to follow where minus signs must 
appear. We try to ease this confusion by presenting 
explicit derivations of Feynman rules from the path 
integral and emphasizing on the definitions. We also 
define propagators in the  momentum space rather 
than in the position space. This leads to the unusual 
looking propagator definitions presented in Eqs. (51) 
to (54). Concentrating on the  momentum space we 
explore different choices of momentum dependences 
of the fields: Majorana spinors do not have the free-
dom in choosing momentum signs in the  Fourier 
transformation, whereas the  Dirac spinors do. In 
order to have the same definition for both cases, we 
introduce the  convention to fix the  momentum de-
pendences of the Dirac spinor.

The examples presented here, loop corrections 
and the seesaw mechanism, are related to our future 
work. We plan to explore the nature of Weyl spinors 
with mixed mass terms in broken gauge field theo-
ries. The  Standard Model with the  seesaw mecha-
nism for one family will be our next step. Later we 
will include mixings between families and a  richer 
Higgs sector than in the Standard Model. The mixing 
terms then complicate the analysis and Weyl spinors, 
as the smallest representation for fermions can show 
their full advantage over the  usual 4-component 
spinor notation.

The authors thank the Lithuanian Academy of Sci-
ences for the support (Project DaFi2015).
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FEINMANO TAISYKLĖS VEILIO SPINORIAMS SU SUMAIŠYTAIS DIRAKO IR 
MAJORANOS MASĖS NARIAIS

V. Dūdėnas, T. Gajdosik

Vilniaus universiteto Teorinės fizikos katedra,Vilnius, Lietuva

Santrauka
Pristatome formalizmą, reikalingą norint nau-

doti Veilio spinorius remiantis Feinmano taisyklėmis. 
Pagrindinis dėmesys skiriamas Veilio spinoriams, 
sumaišytiems su Dirako ir Majoranos masės nariais. 
Tam, kad būtų aiškūs visi naudojami apibrėžimai, mes 

išvedame Feinmano taisykles iš trajektorijų integralo. 
Taip pat pristatome du paprastus Veilio spinorių nau-
dojimo pavyzdžius: fermiono propagatoriaus kilpos 
pataisų integralų sukonstravimą ir žaislinio sūpuoklių 
modelio pirmojo artinio masės narių išvedimą.
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