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Temperature dependences of the thermal conductivity and thermo-optic coefficient are often neglected when thermal lens-
ing in laser crystals is investigated, though their influence is very significant. In this paper, the general solution of heat transfer 
equation with temperature dependent thermal conductivity is found in an integral form, which is very convenient for analytical 
and numerical analysis. Using this solution, the possibility to eliminate spherical aberration by a proper choice of the pump para-
bolicity parameter is investigated in detail. The inaccuracies in the definition of optical path differences used in a few previous 
works for the case of temperature dependent thermo-optic coefficient are explained. It is shown that the use of a correct definition 
increases the value of the parabolic coefficient at which the elimination of spherical aberrations may be realized as compared with 
the original work of Hodgson and Weber. It is also found that nearly the same shapes of pumping are required for elimination of 
spherical aberrations for both radial and tangential polarization.
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1. introduction

Thermally induced spherical aberrations in solid state 
lasers are one of the main issues for beam quality deg-
radation in high average power systems [1–5]. There-
fore, many studies have been made to find methods for 
the compensation of thermal lens (TL) aberrations and 
improving the beam quality [1–12]. One of the causes 
for spherical aberrations occurring is an inhomogene-
ity of the radial pump distribution. A simplified model 
for the  dependence of thermal lensing on the  trans-
verse intensity profile of the pump beam was first de-
veloped for the  temperature independent parameters 
of the  active element (AE) [1, 8]. However, another 
reason for the occurrence of spherical aberrations in 
the AE is the  temperature dependence of its thermal 
conductivity [2, 3, 7, 9, 10, 12–17]. It follows from this 
dependence that the  radial temperature distribution 
has higher nonparabolic terms even for homogeneous 
heat loading in the AE [6, 7]. It has been noted [7] that 
for the  temperature independent thermo-optic coef-
ficient dn/dT it is possible to compensate the spheri-
cal aberration induced due to the  temperature de-
pendence of its thermal conductivity by a  properly 
shaped pumping distribution. The results of [7] were 
reproduced in the  first edition of monograph [2]. In 

the second edition of this monograph [3], these results 
were generalized to the  temperature dependent ther-
mo-optic coefficient dn/dT. Unfortunately, it was done 
incorrectly, using an inappropriately defined refractive 
power of the TL. The generalization of the optical path 
difference (OPD) to the case of temperature dependent 
thermo-optic coefficient [9] is also incorrect. Exten-
sive analysis of the thermal dependence of AE physi-
cal properties such as the thermal conductivity, ther-
mo-optic coefficient and the expansion coefficient on 
the thermal aberration and thermal lensing values was 
performed in [10]. However, a  different temperature 
dependence of the  thermal conductivity coefficient 
was used in [10] and the results of [2, 3, 7] were not 
analysed. Besides, various temperature dependences of 
dn/dT for YAG used in [2, 3, 7, 9, 10] were deduced 
from the measurements at cryogenic temperatures and 
differed significantly from the recent measurement at 
high temperatures [18].

In this paper, we take a  closer investigation of 
the  possibility to reduce the  spherical aberration of 
TL in the  YAG rod by the  use of certain parabolic 
pump distribution taking into account the tempera-
ture dependence of YAG thermal and optical para-
meters in the temperature range from 300 to 500 K. 
The  general analytical solution of the  heat transfer 
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equation with temperature dependent thermal con-
ductivity has been found, which allowed developing 
simple analytical approximations for radial tempera-
ture changes and refractive index distributions taking 
into account the influence of the thermal stresses [19] 
and end face bulging. It allowed us to carry out a de-
tailed analysis of the dependences of spherical aber-
rations on different material and pump parameters. 
It is shown that for a certain combination of polyno-
mial coefficients in the pump beam the fourth order 
aberration term could be completely removed. How-
ever, the  required parabolicity of pump distribution 
is significantly higher than predicted in [2, 3, 7], but 
lower than it follows if the definition [9] of thermally 
induced OPD is used.

2. general solution of heat transfer equation

The values of thermal conductivity coefficient k(T) 
reported in the literature are scattered in a wide range 
for many reasons. It depends significantly on the dop-
ing rate [20, 21]. For instance, for 0.5 at.% the Nd:YAG 
thermal conductivity decreases about 25% as com-
pared with that of the undoped YAG. The temperature 
dependence is strong enough and can be presented 
by the general formula k(T) = k0(Tr/T)ξ. Sometimes, 
the coefficient ξ = 0.7 is used in calculations [10, 17]. 
The  experimental data analysed recently in [14] is 
well fitted by ξ = 1.0 in the temperature range between 
160 and 500 K. This dependence was used in [2, 6, 7, 
9, 10, 12–16] with different values of the coefficient of 
thermal conductivity k0 at the reference temperature 
Tr. Now we think that the most validated value of k0 is 
0.105 W/(cm K) at Tr = 300 K.

The numerical treatment of the temperature distri-
bution in end pumped laser rods showed [13, 22] that 
neglecting longitudinal z-derivatives in the  steady-
state heat transfer equation with radially symmetric 
heating distribution does not strongly change tem-
perature distribution for conventional (noncompos-
ite) rods with the  length L significantly longer than 
the rod radius R when rod end faces are only cooled 
by ambient air. Thus, neglecting the longitudinal heat 
flow through the  end faces of AE, the  heat transfer 
equation becomes rather simple:

. (1)

Here Q(r) ≥ 0 is thermal loading. For an element of 
cylindrical surface the  heat loss by convection with 
the heat transfer coefficient h into the cooling liquid/
water at the temperature Tw is given by

–k(TR)(∂T/∂r)r=R = h(TR – Tw), (2a)

where TR  =  T(R). The  temperature distribution at 
the optical axis should satisfy the boundary condition

(∂T/∂r)r=0 = 0. (2b)

It can be easily obtained from Eqs. (1) and (2) that

TR = Tw + q1(R)/(hR) = Tw + Th. (3)

Here the  notations  and Th  =  Ph/
(hSR) are introduced. Then Ph = 2πLq1(R) is the to-
tal heating power and SR = 2πRL is the area of cy-
lindrical surface. Thus, it follows from Eq.  (3) that 
the  temperature of cylindrical surface depends on 
the total thermal loading only, not on its radial dis-
tribution and thermal conductivity coefficient. Now 
it is easy to get the general solution for temperature 
distribution

, (4a)

where

. (4b)

The solution for the temperature independent case 
(ξ = 0) follows easily from Eqs. (4):

T(r) = TR + q2(r)/k0. (5a)

It is easy enough to get from Eq. (4a) the solution 
for the case when ξ → 1:

T(r) = TR exp[q2(r)/(k0Tr)]. (5b)

Using Eqs.  (4) and (5) it is easy to get particu-
lar analytical solutions for different shapes of ther-
mal loading [6, 7, 10, 12, 13–17]. Solutions (4) and 
(5) are especially convenient for numerical inves-
tigations. It should be noted that the  appropri-
ate normalization of thermal loading distribution 
Q(r) should be used in order to satisfy the equation 
Ph  =  2πLq1(R). As an example, for the  polynomial 
heating distribution

 (6a)

on the axis heat loading should satisfy the equation

. (6b)
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For the  parabolic distribution (b0,2  ≠  0) it is con-
venient to choose b0  =  1. Then b2  ≥  –1 and 
Qp0 = Ph / [πR2L(1 + b2/2)]. For the Gaussian shape

Q(r) = QG0exp[–2(r/wp)
2] (7a)

the normalization constant is equal to

QG0 = 2Ph / {πw2
pL[1–exp(–2(R/wp)

2)]}, (7b)

where wp is the  radius of the  pump beam. Negli-
gence of this normalization requirement leads to 
a  significant deviation of the  calculated tempera-
ture distribution from the  correct ones. So, as an 
example, the maximal value of temperature change 
ΔT(0) ≅ 30 K obtained in [17] differs markedly from 
the correct value ΔT(0) ≅ 37 K for the same param-
eters of the  Gaussian pump. This discrepancy oc-
curs due to the  use of the  incorrect normalization 
parameter –QG0  =  Ph/πR2L, which can be obtained 
from Eq.  7b) for the  case when ς  =  2(R/wp)

2 << 1. 
However, if parameters of [17] are used, this param-
eter is not small (ς = 0.5). Therefore,  –QG0 is notably 
less than QG0. Further, when the  truncated Gauss-
ian distribution was approximated by the parabolic 
one with b2 = –2R2/wp

2, the normalization parameter 
 –QG0 = Ph/πR2L was used in [17] instead of Qp0.

It is easy to evaluate that the parameter

 (8)

in Eq.  (4a) for temperature distribution is small 
(μ(r)  <<  1) for all realistic thermal loading with 
Ph  <  100  W. Therefore, the  expression for the  tem-
perature distribution (4a) can be expanded using 
this small parameter. For the  parabolic pumping 
μ(r) = a + bρ2 + cq4, where q = r/R and

a = (1 – ξ)η(1 + b2/4), (9a)

b = –(1 – ξ)η, (9b)

c = –b2(1 – ξ)η/4, (9c)

. (9d)

Thus, the  temperature distribution T(X  =  ρ2)  = 

 can be approximated by the Tay-
lor expansion as

Ta(X) = T(X = 0) + T'(X = 0)X + T''(X = 0)X2/2+… (10a)

or

Ta(r) ≈ Tc + T2(r/R)2 + T4(r/R)4. (10b)

The derivation showed that

, (11a)

 (11b)

T4 = T2b2/4 + η2ξTc/2. (11c)

It should be noted that exact expressions for 
T(X = 0), derivatives T'(X = 0) and T''(X = 0) were 
used in obtaining Eqs.  (11). It is easy to show that 
Eqs. (11) can be converted to known expressions [2, 
3, 7] when ξ → 1:

Tc = TR exp[η(1 + b2/4)], (12a)

T2 = –ηTc, (12b)

T4 = Tc (–ηb2/4 + η2/2). (12c)

Approximate expressions for Tc,2,4 can be obtained 
from Eqs.  (11) taking into account that the  second 
terms in square brackets of Eqs. (11a) and (11b) are 
small enough. Then, using the expansion formula

(1 + x)α = 1 + αx + α(α – 1)x2/2+…, (13)

different expressions for Tc,2,4 can be obtained. For ex-
ample, using the first orders in Eqs. (13) it is easy to 
obtain the simplified expressions:

Tc ≅TR[1 + η(1 + b2/4)],  (14a)

T2 ≅ –ηTR[1 + ξη(1 + b2/4)].  (14b)

To obtain the value of T4 the values obtained using 
Eqs. (14a) and (14b) should be substituted in Eq. (11c).

The thermal loading power Ph = 60 W, the radius 
R = 2 mm, and the length L = 8 mm of the YAG rod 
were mainly used in the numerical simulations, if other 
parameters are not indicated additionally. To compare 
the approximations proposed in [10, 17] with ours (11), 
in Fig. 1 the results are presented for the thermal con-
ductivity parameter ξ = 0.7 used in [10, 17]. In all sub-
sequent figures the parameter ξ = 1.0 was used. Gener-
ally, approximate values of Tc,2,4 (Fig. 1, curves 2) differ 
only slightly from the exact ones (curves 1). However, 
some questionable assumptions were made in previ-
ous papers [10, 17] during the additional approxima-
tion of these expressions. The authors of [10] assumed 



D. Bričkus and A.S. Dement’ev / Lith. J. Phys. 56, 67–78 (2016)70

that “usually, the variation of the temperature can be 
considered as being small; a 20% variation between 
the center and the periphery of the rod would be an 
important gradient (Tc–TR ~ 60 K), but a small abso-
lute variation.” The lamp pumping was used in [10]. 
Laser diode pumping can induce much higher tem-
perature differences between the center and the edge 

of the  rod. Therefore, we think that the  change of 
the ratio Tc/TR to 1, as it is done in [10], is not justi-
fied in a general case when good accuracy is needed. 
Using this assumption, the authors of [10] proposed 
two simplifications of Eq. (14b) for T2. In the first one, 
it was assumed that

T2 ≈ –ηTR, (14c)

though it is apparent that T2 ≈ –ηTc is better because 
the value ξ = 0.7 is close enough to 1. If the approxi-
mation (14c) is directly substituted to (11c), then 
the formula

  (14d)

is obtained. Then, if the  ratio Tc/TR is changed to 1, 
the following approximation

  (14e)

can be obtained [10]. When Eqs. (14c) and (14e) are 
used, then curves 3 in Figs. 1(b) and (c) are obtained. 
It is seen (Fig.  1(a)) that the  difference between 
Tc (curve  1) and TR (curve  3) is enough notable in 
the considered case. But if we express the η = (Tc–TR)/
[(1 + b2/4)TR] from Eq. (14a) and insert it in Eq. (14c), 
then the second (more accurate) approximation

  (14f)

is obtained [10]. Curves 4 in Fig. 1 represent the re-
sults when Eqs. (14a), (14f) and (14e) are used in 
simulations. It is seen that in this case these curves 
are closer to curves 1. 

The authors of [17] tried to improve the accuracy 
of the approximations for Tc,2,4 and to present results in 
the form close to the one used in [10]. Formulas (14a) 
and (14b) were proposed for the simulation of Tc,2, re-
spectively. They changed the TR to the Tc in Eq. (14e), 
but the use of a more accurate formula (14b) for T2 is 
not consistent with assumptions, by which Eq. (14b) 
was obtained. However, the main drawback of paper 
[17] is the error in the normalization of  –Qp0 = Ph/πR2L, 
which leads to the  conclusion that the  parameter  η 
does not depend on b2 and is equal to –η = η(b2 = 0). 
When using this parameter in calculations, the  re-
sults (curves 5) are very poor. If the correct param-
eter η would be used, then the results would be rather 
close to the  ones obtained using our formulas (11). 

Fig. 1. Dependences of the  radial temperature distribu-
tion parameters on the  pump parabolicity parameter 
of the YAG rod with thermal loading Ph = 60 W, radius 
R = 2 mm and length L = 8 mm taking ξ = 0.7 and using 
different approximated formulae (see the text for details).

(b)

(a)

(c)
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The validity of this approximation can be justified if 
the approximation error er = [Ta(r) – T(r)]/T(r) is low 
enough. For the evaluation of this error the ratio

eR = (Tc + T2 + T4 – TR)/TR (15)

at the edge of the rod can be used. Dependences of 
eR  (b2) for ξ = 0.7 and ξ = 1.0 were calculated using 
our formulas (11) and (12). This ratio does not exceed 
3 and 5% for ξ = 0.7 and ξ = 1.0, respectively, and in 
the  interval 0  ≤  b2  ≤  1 the  ratio eR does not exceed 
0.5%. Thus, the developed approximation is very ex-
act for the positive b2 values, that are most relevant for 
the study of this paper.

The dependences of the  temperature parameters 
Tj(b2) on the parabolic parameter were calculated using 
formulas (12) for the  case ξ  =  1 and are presented in 
Fig. 2. It is seen that the on-axis temperature Tc is high 
enough and decreases monotonically when this param-
eter increases. The absolute value of the parameter T2(b2) 
decreases also with the increase of b2. As it was expected, 
the temperature at the surface of the rod TR = Tw + Th is 
constant (Tw = Tr) and is much lower than the on-axis 
temperature. It is very important that the  parameter 
T4(b2) changes its sign when b2 increases. Therefore, it is 
evident that for the temperature independent thermo-
optic parameter dn/dT there exists such value of b2

  when 
T4(b*2  )= 0, i. e. the thermally induced spherical aberra-
tion can be eliminated in this case [7].

pump sources if the  temperature dependence of 
the thermal conductivity is taken into account. Thus, 
it is obvious that even for the simplest case of the tem-
perature independent thermo-optic coefficient at zero 
stress dn/dT ≡ (dn/dT)σ=0 ≡ β(T) [19], the nonparabol-
ic radial dependence of OPD occurs when the probe 
beam propagates through a rather short heated AE

δΛ(r) = Λ(0) – Λ(r) ≈ LβδT(r), (16)

where Λ(r)  =  n(T(r))L is the  optical path length 
at the  radial coordinate r, L is the  length of AE, 
T(r) is the  temperature distribution in the  AE, 
n(T(r)) = n(Tr) + β[T(r)–Tr] is the refractive index at 
the changed temperature, and δT(r) = T(0) – T(r) is 
the temperature difference. Now, it is evident that for 
the approximate temperature distribution (10b) ther-
mally induced OPD for the case of side pumping can 
be presented in the form

...
2

)( 4
4

2

++=Λ rC
f

rr
T

δ , (17a)

where 

1/fT = –2LβT2/R
2, C4 = –LβT4/R

4. (17b)

Thus, the equation 

T4 = T2b2/4 + η2ξTc/2 = 0 (18)

should be fulfilled for the elimination of the spherical 
aberration (C4  =  0). For the  case of the  temperature 
independent thermal conductivity (ξ = 0) Eq. (18) is 
fulfilled for the uniform thermal loading b2 = 0 only. 
For brevity, we will analyse here the case of ξ = 1.0 only. 
It follows from (12) that Eq. (18) is satisfied for b2 = 2η. 
This equation has two roots, but only one of them 

 (19)

can be in principle physically realized, thus eliminat-
ing the spherical aberration [2, 7]. It should be noted 
that root values (19) do not depend on the values of 
coefficients β and h. For the above discussed YAG rod 
loaded with the power Ph = 60 W the parabolic co-
efficient b*2= 0.33 is required for spherical aberration 
elimination.

It should be noted that the authors of the original 
work [7] defined the refractive power D first “by ex-
tending the relationship between quadratic tempera-
ture profiles and the refractive power

 (20a/9)

Fig. 2. Dependences of the radial temperature distribu-
tion parameters on the pump parabolicity parameter for 
ξ = 1 and the same other parameters as in Fig. 1.

T j(b
2) (

K
)

Tc–Tr

T2

T4

Th

3. spherical aberrations of thermal lens

It is seen from the  obtained solutions (Fig.  2) that 
the  radial distribution of the  temperature contains 
forth order terms (T4(b2 = 0) ≠ 0) even for uniform 
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to arbitrary temperature profiles. In general, D is 
a function of the radius which means that the phase 
shift exibits higher order radial terms than quad-
ratic ones. Having calculated D(r) with Eq. (20a/9), 
the phase shift Φ per transit is then determined by

 (20b/10)

with κ: wave number.” The formula numbers of origi-
nal texts are given after the slashes in these and follow-
ing citations. In the first edition of their monograph 
[2] they wrote shortly: “The refractive power can be 
determined by using the relationship (20a/12.4).” In 
the second edition of the monograph [3] they wrote 
briefly: “The refractive power of the  thermal lens is 
given by (20a/13.48).” The following interpretation of 
the defined refractive power was given in the mono-
graph [2, p. 392]: “For a non-parabolic temperature 
profile, the  refractive power is a  function of the  ra-
dius. This means that an incident ray parallel to 
the optical axis at a distance r will intersect the opti-
cal axis at a  distance 1/D(r) from the  principal axis 
of the thermal lens.” There are a few inaccuracies in 
these definitions. First, it is easy to see that even for 
the  temperature independent thermo-optic coeffi-
cient the definition (20b/10)

 (20c)

does not agree with (17). However, the  require-
ment for “spherical aberration” elimination in (20c) 
is the same – T4 = 0. Therefore, the same result (19) 
is achieved. But for the temperature dependent β(T) 
the results will be different as will be shown later. Sec-
ond, it can be shown that an incident ray parallel to 
the axis at the distance r0 intersects the optical axis at 
the distance [8, 10, 22]

,  (20d)

contrary to 1/D(r).
It is obvious that the  temperature nonlinearity of 

the thermo-optic coefficient has a significant influence 
on the change of the refractive index and spherical ab-
erration. We can also take into account the stress in-
duced refractive index change [19], that also depends 
nonlinearly on the  temperature because it contains 
the temperature dependent expansion coefficient α(T). 
The reviews of the earlier published values for the ther-
mo-optic coefficient β(T) and expansion coefficient 
α(T) have been given in [22, 23]. We will mainly use 
the recently published values in [18], because this refer-
ence provides temperature-dependent data in the tem-

perature range 300–600 K. It is obvious that in the short 
enough temperature range from 300 to 500 K the linear 
approximation of these coefficients can be used:

α(T) = α1 + α2

~T, α1 = α(Tr), α2 = (dα/dT)T=Tr
,      (21a)

β(T) = β1 + β2

~T, β1 = β(Tr), β2 = (dβ/dT)T=Tr
.      (21b)

Here ΔT ≡ ~T = T – Tr, Tr = 300 K. 
The data of [18] and from previous papers [3, 9, 

10] are presented in Fig. 3. It is seen that the values of 
these coefficients differ significantly. The approxima-
tion α(T) = α* + α2T with α* = –1.78 and α2 = 0.033 K–1 
in units of ppm/K upper blue line with triangle sym-
bols (line 4) has been criticized in [24] because of its 
negative value for T = 0 even though this fit produces 
values near room temperature closer to the reported 

Fig.  3. Linear approximations of temperature depend-
ence of the expansion coefficient (a) and the thermo-op-
tic coefficient (b) used previously (line 4 (blue online) is 
updated data from [3], line 3 (red) shows data from [9], 
line 2 (green) is data from [10]) and used in this paper 
(line 1a), which was extracted from recently published 
data (curve 1 from [18]).

ΔT(K)

ΔT(K)

β(
T)

(p
pm

/K
)

α(
T)

(p
pm

/K
)

(a)

(b)
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single-point measurements. Therefore, the  author 
of [24] prefers to use another approximation, which 
underestimates the  thermal expansion coefficient 
of YAG at room temperature but satisfies that α → 0 
as T → 0, as required by theory. Thus, it is seen that 
the approximations of data from [18] give the lowest 
values for α1,2 and β1,2 as compared with values used 
in previous papers.

The YAG crystal, while cubic, is nearly isotropic 
[19]. Therefore, only the  knowledge of the  Young’s 
modulus E and the  Poisson’s ratio ν is needed. It 
was shown [25] that E and ν change no more than 
by 7 and 2%, respectively, across the cryogenic range 
140–298  K. Therefore, we have assumed that they 
are also constant in the range 300–500 K and have 
the values E = 280 GPa and ν = 0.26 [19].

Calculation of the  photoelastic effect contribu-
tion to the thermally induced refractive index change 
requires the values of elastooptic coefficients pij [19], 
which are also temperature dependent, in princi-
ple  [26]. However, the  data from [27] is only refer-
enced in the literature for pij values, and their temper-
ature dependence has not been investigated till now.

A simple expression for the  refractive index 
change in the plane strain approximations has been 
recently found [19] for the temperature independent 
parameters of AE

nr,θ = n0 – A1T
(R) + [β + A1]

~T ± A2[T
(r) – ~T(r)],    (22a)

where n0 is the initial refractive index, R is the radius 
of AE, A1  =  αa1, A2  =  αa2, upper (+) and lower (–) 
signs describe the radial and tangential components 
of the index change and

, (22b)

 (22c)

. (22d)

The generalization of (22) to temperature depend-
ent parameters may be made by the use of adiabatic 
transition from small to finite temperature changes. 
For a very small temperature change ~T = d ~T(r) the in-
dex change is expressed by

dnr,θ(
~T(r)) = –a1α(~T)dT(R) +[ β(~T)

+ a1α(~T)]d ~T(r) ± a2[α(~T)dT(r) – α(~T)d ~T(r)]. (23a)

For a finite temperature change ~T(r) the total refrac-
tive index change can be found by the  integration of 
Eq. (23a)

nr,θ(r) = n0 – a1αΣ
(R) + βΣ + a1αΣ ± a2[αΣ

(r) – αΣ], (23b)

where 

, ,

 . (23c)

Using Eq. (10b) for the  temperature distribution 
and the linear approximation for α(T) and β(T), it is 
easy to find

αΣ ≈ α1

~T + α2

~T2/2 ≈ α1[T0 + T2(r/R)2 + T4(r/R)4]

+(α2/2)[T0
2 + 2T0T2(r/R)2 + (2T0T4 + T2

2) (r/R)4],    (24a)

βΣ ≈ β1

~T + β2

~T2/2 ≈ β1T0 + β2T0
2/2 +(β1T2 + β2T0T2)(r/R)2

+(β1T4 + β2T0T4 + β2T2
2/2) (r/R)4 ,  (24b)

where T0 = Tc – Tr and Tw = Tr is assumed for short. 
Inserting (24) in α(r)

Σ , it follows: 

αΣ
(r) ≈ α1T0 + α2T

2
0/2 + (α1T2/2 + α2T0T2/2)(r/R)2 

+(α1T4/3 + α2T0T4/3 + α2T2
2/6) (r/R)4 . (24c)

Now, Eq. (23b) can be approximated as

nr,θ(r) = N(0)
r,θ + N(2)

r,θ (r/R)2 + N(4)
r,θ (r/R)4, (25a)

where the  following expressions for coefficients in 
Eq. (25a) are found:

N(0)
r,θ = n(Tr) + [β1T0 + β2T0

2 /2 + a1(α1T0 + α2T0
2/2)], (25b)

N(2)
r,θ = (β1 + β2T0)T2 + a1 (α1 + α2T0)T2

–+ a2(α1 + α2T0)T2/2, (25c)

N(4)
r,θ = β1T4 + β2T0T4 + β2T2

2 /2 + a1(α1T4 + α2T0T4 + α2T2
2/2)

–+a2(2α1T4 + 2α2T0T4 + α2T2
2)/3. (25d)

If the  bulging of end faces of AE is taken 
into account, then a1 should be changed to a1

*  = 
a1  +  (1  +  ν)  (n0  –  1)Cbg, where the  coefficient 
Cbg (0 ≤ Cbg ≤ 1) allows taking into account end face 
bulging [9, 28]. It is important to note that for the rod 
type AE the contribution of face bulging to OPD is 
a few times smaller as compared to the contribution 
due to index change.
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If the  change of the  refractive index depends on 
the longitudinal coordinate z, then the total OPD for 
the given r can be found by integrating the appropri-
ate expression along the  z. It should be noted that 
the so-called generalized (temperature independent) 
thermo-optic coefficients χr,θ are often used [5, 19] for 
the radial and tangential OPD calculation:

. (26)

But the generalization of Eq. (26) on the tempera-
ture dependent case proposed in [22] and later used 
in [9, formula (43)]

, (27a)

where

χ(T) = β(T) + Cα(n0 – 1) (1 + ν)α(T), 0 < Cα < 1,   (27b)

is incorrect as it can be easily seen from the  deriva-
tion of Eq. (25). Besides, the use of T(r, z) in Eq. (27a) 
instead of ~T(r, z) may increase the value of local OPD 
several times. 

The influence of the expansion coefficient α(T) was 
not taken into account in [2, 3, 7]. It is easy to get re-
quired expressions taking in formulas (25) α1 = α2 = 0. 
In this case the  change of the  refractive index is 
the same for both polarizations and the coefficient of 
the spherical aberration is

N(4)(b2) = β1T4 + β2T0T4 + β2T
2
2/2. (28a)

Authors of [10] started with the expression (B.12), 
which in our notation can be written as

.            (29)

Taking into account that β(Tc)  =  β1+  β2(Tc  –  Tr), 
the same expressions (28a) are obtained from Eq. (29).

If “optical power” defined in [2, 3, 7] is used for 
the investigation of the possibility to eliminate spheri-
cal aberration, then Eq. (20a) is expressed as

, (30a)

where

 (30b)

coincides with the formula (13.52) from [3]. Equation 
(30b) can be written as

, (30c)

where

N(4–)(b2) = β1T4 + β2T0T4 + β2T
2
2/6. (28b)

Thus, the condition γ = 0 proposed in [3] for elim-
ination of the  spherical aberration is equivalent to  
N(4-)(b2) = 0. If the definition of OPD from [9] would 
be used, then the coefficient 

N(4+)(b2) = β1T4 + 2β2T0T4 + β2T
2
2 (28c)

should be equal to zero for the elimination of spheri-
cal aberrations. So, it is seen that Eqs. (28a) and (28b) 
differ by the last term, just like Eq. (28c) where addi-
tionally the second term is magnified by a factor of 2. 
Thereby, approximations (11), (12) or (14) for coef-
ficients T0,2,4 can be applied when using formulas (28) 
for different cases of the temperature dependence of 
the conductivity coefficient.

4. possibility of elimination of spherical 
aberrations

We discuss the  possibility to eliminate the  spheri-
cal aberration for the  case of k(Tr)  =  k0 and β2  ≠  0 
first. It should be noted that values of T0,2,4 depend 
significantly (through TR) on the value of h or non-
dimensional ah  =  k0/(2hR). This change should be 
generally taken into account during calculation of b2 
values, at which spherical aberration is eliminated 
(N(4)(b2) = 0). For the case of constant thermal con-
ductivity and constant loading Qp0 at the axis of AE 
the parameter η does not depend on b2, and the para-
meters T0 = Th + (1 + b2/4) ηTr, Th = 4ah(1 + b2/2) ηTr, 
T2 = –ηTr and T4 = –ηb2Tr/4 are the linear functions of 
b2. Therefore, the equation N(4)(b2) = 0 can be presented as 

Ab2
2 + Bb2 + C = A[b2 + B/(2A)]2 + C – B2/(4A) = 0, (31a)

where

A = –(ah + 1/8)C,   B = β1T2/4 – 2(ah + 1/4)C,

C = β2T2
2/2. (31b)

Taking into account that ah > 0 and T2 < 0, it is easy 
to see that A < 0, B < 0, C > 0, C – B2/(4A) > 0. There-
fore, Eq. (31a) should have two different real roots:

. (32)

The solution should satisfy the necessary conditions: 
Q(r) ≥ 0 and ~T(r) ≥ 0. Using values β1 = 8.48 × 10–6 K–1 
and β2 = 0.021 × 10–6 K–2 extracted from the data of [18], 
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it is easy to find for the fixed Qp0 = 0.6 W/mm3 that 
only one root b2

(2) ≡ b*2 ≈ C/|B| = 0.23 satisfies the con-
dition Q(r) ≥ 0. This result belongs to the case with 
ah = 0.13 (Fig. 4). It is seen that values of b*2 differ no-
tably for different ah. The line with ah = 0 corresponds 
to the case of the boundary condition of the first kind 
when temperature at the periphery of the rod is equal 
to the  ambient temperature Tr. Thus, the  decrease 
of the  convection heat transfer coefficient h results 
in the  decrease of b*2  coefficients. In general, using 
Eq. (32) we can find roots b*2 for different pump den-
sities at the axis of AE and different coefficients of heat 
transfer (Fig. 4). Using this data, roots for the given 
fixed power can be found. As an example, the  root 
b*2  =  0.23 corresponds to powers Ph(b*2)  =  πR2LQp0 
(1+ b*2/2)≈ 66.6 W, but for the thermal load Ph = 60 W 
the corresponding b*2 = 0.21. It should be noted that 
the cases of the fixed pump power density at the axis 
of AE are important for the investigation of situations 
when the  elimination of spherical aberration must 
be realized for the  given on-axis inversion of active 
ion population. It follows from the above results that 
the influence of the temperature dependence of ther-
mal conductivity at β2 = 0 is stronger (b*2 = 0.33) than 
the influence of β2 at constant conductivity (b*2 = 0.21) 
for the same values of parameters used.

It should be noted that more complicated equa-
tions need to be solved in the general case instead of 
the quadratic equation (31) for b*2. Therefore, a simple 
numerical method was used to find required roots. 
Graphics of spherical aberration coefficients (25d) and 
(28) are presented in Fig. 5 for ξ = 1.0, Cbg = 0, Ph = 60 W 
and various values of αj, βj parameters. Nonzero values 

of these parameters are obtained using the data from 
[18]: α1 = 6.39, α2 = 0.0124, β1 = 8.48, β2 = 0.021 in ppm 
(1 ppm = 10–6). Intersections of these curves with the x-
axis give the required values of b*2. Curve 1 corresponds 
to β1 ≠ 0, β2 = α1 = α2 = 0 and follows from all expres-
sions for the aberration coefficients. The b*2 ≈ 0.33 in 
this case (see Eq. (19)) does not depend on β2. Curve 2 
was calculated using Eq. (28b) and α1 = α2 = 0. Thus, 
the nonzero value of β2 increases the value of b*2 ≈ 0.40 
only slightly if the  requirement for elimination of 
spherical aberration is used from [3]. Curve 3 presents 
results when the  arguably correct formula (28a) and 
α1 = α2 = 0 are used. So, the required parabolicity coef-
ficient b*2 ≈ 0.535 increases notably as compared with 
the previous incorrect value b*2  ≈ 0.40. The changes 
of b*2r  ≈  0.530 and b*2θ  ≈  0.537 due to the  contribu-
tion of the photoelastic effect (α1 ≠ 0, α2 ≠ 0) for ra-
dial (curve 3a) and tangential (curve 3b) polarizations 
are very small as compared with the results of curve 3. 
The  incorrect definition of OPD (27) for the  case of 
the  temperature dependent thermo-optic coefficient 
(β1 ≠ 0, β2 ≠ 0) leads to the overrated value b*2 ≈ 0.665 
(curve 4) even neglecting the contribution of the pho-
toelastic effect (α1 = 0, α2 = 0).

By the  same manner the  dependence of corre-
sponding roots b*2  on the  thermal loading powers 
can be found (Fig.  6). It is seen that taking into ac-
count the  temperature dependence of thermo-optic 

Fig.  5. Dependences of forth order polynomial coef-
ficients of the  thermally induced refractive index on 
the  pump parabolicity coefficient for fixed total load-
ing power 60 W and different expressions for the opti-
cal path difference: curve 1 (brown online) from [2, 7], 
curve 2 from [3], curve 4 (blue) from [9] and curves 3 
(violet), 3a (red) and 3b (green) [formulas of this pa-
per]. Curves 3a and 3b correspond to radial and tan-
gential polarizations, when the  temperature depend-
ence of the expansion coefficient is taken into account.

Fig. 4. Dependence of the critical parabolicity parameter 
required for spherical aberration elimination for pump 
beams with given thermal loading density at the  rod 
axis for different heat transfer coefficients in the case of 
constant thermal conductivity.
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β(T) and thermal expansion α(T) coefficients signifi-
cantly enhanced b*2r   (curve  3a) and b*2rθ (curve 3b) 
values as compared with the  corresponding values 
b*2  for the case of the temperature independent ther-
mo-optic coefficient β(Tr) investigated in [7] first, 
when the photoelastic effect was neglected (curve 1). 
It should be noted that incorrect generalization [3] to 
the  case of β(T) gives higher values of b*2  (curve  2), 
but significantly lower than the correct ones. It should 
be noted that the  difference between b*2r

 and b*2θ is 
very small although the  thermally induced birefrin-
gence δn(r) = nr(r) – nθ(r) is notable enough. The use 
of the generalized OPD definition [9] gives markedly 
higher values of b*2  (curve 4). Thus, the correct defi-
nition of OPD for temperature dependent parameters 
leads to higher values of b*2 (curves 3a and b) than fol-
lows (curve 2) from the incorrect definition of optical 
power [3] and lower values as compared with the cor-
responding values (curve 4) if the definition proposed 
in [9] of OPD is used.

In the conference paper [29], without reference to 
[2, 3, 7], the optical path difference is defined as in (16) 
for the  temperature independent thermo-optic coef-
ficient ∂n/∂T. Thus, it is assumed that “an important 
source of spherical-aberration arises from the  ther-
mal-conductivity’s temperature dependence”. For 
a  uni formly pumped rod this dependence results in 
a non parabolic temperature and refractive index distri-
bution. It is also stated that “there is, however, no rea-
son why the pump light distribution must be constant” 
because “the pump-distribution could be controlled 
by varying the mechanical dimensions (of the pump-
chamber) as well as the rod doping.” Thus, the authors 
of [29] believed that “T4 = 0 (in our notation) should 
yield a  spherical-aberration free pump-chamber.” It 

was shown with the aid of a two-dimensional Monte-
Carlo based simulation package that by increasing 
the rod-doping a dip could be generated in the pump 
distribution, and the coefficient T4 = 0 for the “STAR” 
pump-chamber with the rod Nd doping 0.8% can be 
achieved at a heat power of 1050 W [29]. As follows 
from the results discussed above, the condition T4 = 0 
is not sufficient for the elimination of spherical aber-
ration. The  authors of [10] believed that the  cooling 
temperature of LD bars determines the emission wave-
length of the diodes, and as a consequence allows to 
vary the  b2 parameter of pump power distribution. 
However, the presented pump profiles of the laser head 
show the  uniform and dome type distributions. In 
the recent paper [30] it is also shown that by chang-
ing the shape of the octagonal microchip or Yb dop-
ing the absorption distribution with a dip in the central 
region of the rod may be obtained. Thus, the required 
pump beam profile for the elimination of spherical ab-
erration may be realized in principle, though it may be 
a rather complicated experimental task.

5. conclusions

In this paper, we presented a  detailed analysis of 
the main mechanisms which contribute to the spheri-
cal aberrations of the  thermal lens induced in YAG 
AE under different radial shapes of thermal loading. 
The  analytical solution of the  heat transfer equa-
tion with the  general enough temperature depend-
ence of the thermal conductivity coefficient is found 
in the  integral form, which is especially convenient 
for a  numerical analysis of the  radial temperature 
distribution. It is shown that a  small expansion pa-
rameter exists for the real value of thermal loading, 
which allows getting a simple, but very exact analyti-
cal presentation of radial temperature distribution in 
the form of the Taylor series expansion. This expan-
sion allowed calculating the refractive index change 
taking into account the  temperature dependence of 
the  thermo-optic coefficient, the  coefficient of lin-
ear thermal expansion and the  contribution due to 
the photoelastic effect. The analytical expressions for 
the radial dependence of the optical path difference 
are found using a linear approximation of the recent 
measurements of the change of the expansion coef-
ficient and the thermo-optic coefficient at high tem-
peratures.

The inaccuracies in the previously used definitions 
of the optical path difference for the case of the tem-
perature dependent thermo-optic coefficient are dis-
cussed. It is shown that the use of these definitions sig-
nificantly changes the values of the parabolic coefficient 
at which the elimination of spherical aberration may 

Fig.  6. Dependence of critical parabolicity parameter 
on the thermal loading power. The curve numbers are 
the same as in Fig. 5.

Ph (W)

b* 2
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be realized. It is noted that the values of the  thermal 
conductivity and the  thermo-optic coefficient of 
the YAG crystal used in the previous works were sig-
nificantly larger than recently measured. Therefore, 
the temperature dependence of the thermo-optic coef-
ficient is not the principal cause for thermal spherical 
aberration, as was stated previously. Both dependences 
with the temperature of the thermal conductivity co-
efficient and the  thermo-optic coefficient are nearly 
equally important for the origin of spherical aberration. 
It is shown that the use of the correct definition of OPD 
for temperature dependent parameters leads to higher 
values of the parabolicity parameter of the pump dis-
tribution required for the  spherical aberration elimi-
nation than followed from the incorrect definition of 
optical power [3] and to lower values as compared 
with the corresponding values if the definition of OPD 
proposed in [9] is used. It is shown that the elimina-
tion of the spherical aberration for radial polarization 
leads to a practically total elimination of the spherical 
aberration for tangential polarization, and vice versa. 
Thus, the  elimination of thermally induced spherical 
aberration by a proper choice of the pump beam profile 
is possible in principle though it may be a more diffi-
cult experimental task due to notably higher values of 
the parabolicity parameter that are required.
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sąlygos mažinti šilumines sferines aberacijas iš šono 
Kaupinamuose yag strypuose
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santrauka
Šiluminio laidumo ir termooptinio koeficiento dn/

dT temperatūrinės priklausomybės yra vienas pagrindi-
nių veiksnių, lemiančių šiluminių aberacijų atsiradimą, 
tačiau jos ne visada yra įskaitomos nagrinėjant šilumi-
nius lęšius kietojo kūno lazeriuose. Šiame darbe rastas 
šiluminės lygties su temperatūriškai priklausančiu šilu-
minio laidumo koeficientu bendras integralinės išraiš-
kos pavidalo sprendinys, patogus naudoti tiek analitinei, 
tiek skaitinei analizei. Pasitelkus šį sprendinį detaliai iš-
nagrinėta galimybė panaikinti šilumines sferines abera-

cijas parenkant tam tikros formos parabolinį kaupinimo 
pasiskirstymą.

Aptarti optinio kelio skirtumo apibrėžimų, naudoja-
mų ankstesniuose darbuose, netikslumai, kai termoop-
tinis koeficientas priklauso nuo temperatūros. Parodyta, 
kad naudojant teisingą apibrėžimą parabolinio koeficien-
to vertė, kai pasiekiamas sferinių aberacijų panaikinimas, 
padidėja, palyginti su gaunama naudojant Hodgsono ir 
Weberio išraišką. Taip pat rasta, kad tiek radialinės, tiek 
tangentinės poliarizacijos sferinėms aberacijoms panai-
kinti reikalinga beveik ta pati kaupinimo forma.


