
Lithuanian Journal of Physics, Vol. 55,  No. 4, pp. 315–318 (2015) 
© Lietuvos mokslų akademija, 2015

THE DUAL PROPERTY OF NUMBER AND VELOCITY 
FLUCTUATIONS OF CHARGE CARRIERS IN A MACROSCOPIC 

CONDUCTOR UNDER THERMODYNAMIC EQUILIBRIUM 
CONDITIONS

L. Reggiani a, c, E. Alfinito b, c, and T. Kuhn d

a Dipartimento di Matematica e Fisica, “Ennio de Giorgi”, Università del Salento, via Monteroni, I – 73100 Lecce, Italy
b Dipartimento di Ingegneria dell’ Innovazione, Universit`a del Salento, via Monteroni, I-73100 Lecce, Italy

c CNISM, Via della Vasca Navale, 84 – 00146 Roma, Italy
d Institut für Festkörpertheorie, Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany

E-mail: lino.reggiani@unisalento.it

Received 20 September 2015; accepted 29 September 2015

Fluctuation-dissipation relations are complemented by relating the macrovariables conductance and resistance, that describe 
dissipation, to the microvariables variance of carrier number and drift velocity fluctuations, that are the noise sources for constant 
voltage and constant current operation conditions, respectively. Thermal equilibrium implies a relationship between these two 
noise sources which follows from the reciprocity property of conductance and resistance. The boundary conditions of the mea-
surement select the proper microscopic source of fluctuations to be related to the dissipation. An important consequence is that 
the source of shot noise, being associated with fluctuations of the carrier number inside the sample, is already present under 
equilibrium conditions, while the time scale of the source changes from an effective transport time to a current transit time when 
going from equilibrium to nonequilibrium conditions.
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1. Introduction

It is a  common interpretation that thermal noise of 
a macroscopic conductor [1–3] is associated with ve-
locity fluctuations due to the Brownian motion of free 
carriers inside the sample. By contrast, in the presence 
of an imposed current, for independent carriers the 
shot noise associated with fluctuations of the number 
of carriers due to their granular nature is evidenced in 
the standard form SI = 2qI [4], with SI being the low-fre-
quency current spectral-density, and q being the abso-
lute value of the charge responsible of the steady current 
I. In the past years the presence of shot noise emerged 
as an ubiquitous phenomenon in mesoscopic conduc-
tors [5]. As a consequence, the concept of the existence 
of two independent kinds of noise, thermal, synony-
mous of equilibrium conditions, and shot, synonymous 
of nonequilibrium conditions, has taken place [5, 6].

The aim of this paper is to go beyond this concept 
of the two noise sources by proving that thermal noise 
can be also interpreted as originating from carrier 
number fluctuations. Indeed, the space and time sym-
metry of the thermal equilibrium conditions allows for 
a dual representation of thermal noise. The  two rep-

resentations are complementary with respect to each 
other according to the  chosen boundary conditions 
taken to detect the fluctuating macrovariable, i. e. cur-
rent or voltage. By analogy with the standard expres-
sions of the fluctuations of the macroscopic variables 
(i. e. the spectral densities of current and voltage fluc-
tuations) in terms of the dissipation (i. e. conductance 
and resistance) we provide the expressions of dissipa-
tion in terms of the microscopic source of fluctuations 
(i.  e. carrier number or drift-velocity). In this way, 
the theoretical frame of the fluctuation-dissipation re-
lations in the limit of zero frequency are fully assessed 
through their dual representation, i. e. the dissipation-
fluctuation relations. We provide a formulation that is 
independent of the kind of statistics, thus applying to 
classical as well as to fermionic and bosonic particles. 
A  series of interesting consequences will be further 
presented and discussed.

2. Theory

Current and voltage fluctuations of a  two-terminal 
sample at thermodynamic equilibrium are described 
by the Callen–Welton fluctuation-dissipation theorem 
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[3] that in the limit of zero frequency coincides with 
the Nyquist relations [2]

 
, (1)

 ,
 (2)

with SI and SV being the  spectral densities of instan-
taneous current and voltage fluctuations, respectively 
(we recall that being at equilibrium their average val-
ues are identically zero). −I 2 and -V 2 are the  variances 
of current and voltage fluctuations, respectively, ∆f is 
the  bandwidth of interest (microscopically related to 
the temporal profile of the corresponding correlation 
function), kB is the Boltzmann constant, T is the ab-
solute temperature, G is the  conductance, and R is 
the  resistance of the  two-terminal sample. Here and 
henceforth, the  bar over physical quantities denotes 
the ensemble average.

From a  phenomenological microscopic approach, 
that uses the generalized Einstein relation and Ohm’s 
law, it is

  
, (3)

, (4)

with  being the variance of the total number of 
carriers inside the  sample, τN a  characteristic time 
that will be detailed later, L the  length of the sam-
ple,  the  variance of electric-field fluctuations 
averaged over the  sample length,  the variance 
of carrier drift-velocity fluctuations while moving 
inside the sample, and μ being the carrier mobility.

The choice of the boundary conditions is of cru-
cial importance since the fluctuating current is that 
one measured in the outside short circuit (constant-
voltage conditions) while the  fluctuating voltage is 
that one measured at the  terminals in the  outside 
open circuit (constant-current conditions). Here 
the  electrical contacts are assumed to be perfect-
ly ohmic and of negligible length. Furthermore, 
the contacts do not play any role for the kind of sta-
tistics obeyed by carriers.

From a macroscopic point of view, the dual prop-
erty of the fluctuation-dissipation theorem is a con-
sequence of the  reciprocal property of the  linear-
response coefficients (like Norton’s and Thévenin’s 
theorems in electrotechnics),

GR = 1. (5)

From a microscopic point of view, this dual prop-
erty is more intriguing since current fluctuations are 
associated with fluctuations of the  total number of 
carriers instantaneously present in the short-circuited 
sample, while voltage fluctuations are associated with 
the instantaneous steady-state (drift) velocity of carri-
ers inside the open-circuited sample. Indeed, by using 
the generalized Einstein relation [7], holding both for 
classical and quantum statistics (in the case of bosons 
here and in the  following we consider only tempera-
tures above the critical temperature for the Bose–Ein-
stein condensation [8]), we have

, (6)

with μ0 being the chemical potential, and

D = -v2τ (7)

is the  analogously generalized diffusion coefficient 
[7], with the quadratic velocity averaged over the dif-
ferential distribution function with respect to the car-
rier number (the so-called differential quadratic ve-
locity) given by

. (8)

Here, k is the carrier wave vector, ϵk is the correspond-
ing energy, f is the distribution function, and τ = 1/∆f 
is a  characteristic time describing transport proper-
ties like diffusion and mobility, which therefore also 
describes the bandwidth in Eq. (1).

Using the general relation for number fluctuations 
in the grand canonical ensemble (which is again inde-
pendent of the type of statistics [9])

 (9)

the conductance can be written as

. (10)

Accordingly, for the  spectral density of current 
fluctuations at zero frequency we have

. (11)

The expressions given above correlate the conduct-
ance to the  fluctuations of the  total carrier number 
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through the  diffusion coefficient and, in particular, 
using Eq. (3) they imply

. (12)

Thus, τN can be interpreted as an effective trans-
port time through the  sample [10]. Analogously, 
from the voltage fluctuations and the Nyquist relation 
(Eqs. (2) and (4)) we obtain

, (13)

where we have used again ∆f = 1/τ as well as the rela-
tion

 (14)

for the  mobility with the  carrier effective mass m. 
We thus find an equivalent relation, announced here 
for the  first time, that correlates the  resistance with 
the variance of the instantaneous carrier drift velocity 
fluctuations:

. (15)

The reciprocity property in Eq. (5) implies the dual 
property inter-relating fluctuations of the total carrier 
number with those of the drift velocity in the respec-
tive operation conditions

 , (16)

where we have used

 , (17)

which follows from the general relation for the vari-
ance of the drift velocity fluctuations

 . (18)

The relation (16) together with the  definitions 
coming from statistics and given in Eqs. (8), (9) and 
(17) is the main result of the paper. The relation (16) 
is formally independent of the type of statistics [9], 
even if the values of the average quantities depend 
on the type of statistics.

In other words, at thermodynamic equilibrium 
the carrier total-number fluctuations in the  con-

stant-voltage scheme are inter-related to carrier drift 
velocity fluctuations in the constant-current scheme. 
Notice that all the above expressions hold for classi-
cal as well as for Fermi or Bose degenerate statistics, 
thus complementing the fluctuation-dissipation the-
orem in the limit of zero frequency.

3. Conclusions

The paper reports the dual property of the fluctuation-
dissipation theorems by relating the  dissipation to 
the microscopic noise sources, what we call the dissipa-
tion-fluctuation relations. These relations are given in 
a form that is independent of the type of statistics, thus 
including classical, Fermi–Dirac and Bose–Einstein 
statistics (the latter above the critical temperature for 
Bose–Einstein condensation). From a  physical point 
of view, the temperature entering the Nyquist relations 
(1) and (2) is here interpreted in dynamical terms and 
associated with the  variance of instantaneous carrier 
total-number or drift velocity fluctuations, as dictated 
by statistics. For this purpose, we go beyond the classi-
cal interpretation, generally accepted in the literature, 
that relates mobility (i.  e. dissipation) to the  fluctua-
tions of the single carrier velocity [11].

The main results can be summarized as follows. 
Equations (10) and (15) should be called dissipation-
fluctuations relations, since they relate the dissipative 
quantities, conductance and resistance, directly with 
the  associated macroscopic fluctuations expressed in 
terms of their microscopic sources.

By expressing current fluctuations in terms 
of the  ratio between the  variance of carrier num-
ber fluctuations and the  effective transport time τN 
we show that thermal noise can also be associated 
with fluctuations of carrier number, that is with the dis-
creteness of the  electrical charge. Furthermore, for 
fermions the  vanishing of the  low-frequency current 
spectral-density at T  =  0 is associated with the  van-
ishing of the variance of carrier number fluctuations, 
i. e. with the instantaneous correlation (coherence) be-
tween appearance and disappearance of an elemental 
carrier number fluctuation inside the  sample. This is 
essential because here diffusion differs from zero even 
at zero temperature, and thus the notion of diffusion, 
as synonymous of noise, fails completely. Accordingly, 
the source of shot noise is already present even at thermal 
equilibrium, as described by the generalized Schottky 
formula [4, 12]

 
. (19)
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Indeed, the  Schottky formula above merely rep-
resents the  transition from thermal equilibrium to 
nonequilibrium conditions when a steady current is 
imposed by an applied voltage.

Sometimes it is erroneously reported that shot 
noise adds to thermal noise, which leads to an artifi-
cial over-estimate of the noise. From a physical point 
of view, the source of shot noise is the same as that 
of thermal noise under constant voltage condition, 
i. e. fluctuations of the total number of carriers inside 
the sample. However, at thermal equilibrium the time 
scale of current fluctuations is related to the effective 
transport time as , while in the  high 
voltage limit, V  >>   kBT/q, the  time scale is associ-
ated with the  current transit time, i.  e. τT  =  L/vd. 
In both cases this time scale is associated with the tran-
sit time spent by carrier number fluctuation in going 
from one contact to the opposite one, and the differ-
ence by a  factor 2 in the high voltage limit is related 
to a symmetry breaking since the current selects only 
the  path from an injector to a  collector to dissipate 
a carrier number fluctuation outside the sample [13]. 
One should notice that the generalized Schottky for-
mula above holds only for independent or distin-
guishable carriers. Interaction among carriers or their 
indistinguishability is responsible under far from equi-
librium conditions of shot-noise suppression (carrier 
antibunching because of a repulsive character of the in-
teraction) or enhancement (carrier bunching because 
of an attractive character of the  interaction). In con-
trast, for the classical case it is the absence of motion at 
T = 0, i. e. D = 0, that is responsible for the vanishing 
of current noise. For the case of voltage fluctuations, 
the same limit at T = 0 is associated with the tendency 
of the drift velocity fluctuations to approach zero which 
is again a property which is independent of the kind of 
statistics.

We have thus shown that the  reciprocal property 
given in Eq.  (16) interrelates the current and voltage 
fluctuations in close analogy with the  reciprocity of 
macroscopic conductance and resistance.
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