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We demonstrate that the indirect interband generation of photons in the optically or injection pumped graphene bilayer
(GBL) heterostructures with an array of metal particles (GBLs “decorated” by metal particles) with population inversion can sur-
pass their intraband (Drude) absorption. This can result in rather large absolute values of the negative dynamic terahertz (THz)
conductivity in a wide range of frequencies at room temperature. This effect enables the creation of novel THz lasers based on

the decorated GBLs.
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1. Introduction

The population inversion created by optical or in-
jection pumping in graphene layers (GLs) and gra-
phene bilayers (GBLs) with a zero energy gap opens
up the possibility of the negative dynamic conduc-
tivity in the terahertz (THz) range of frequencies
(=)

The THz gain in the pumped GLs was demon-
strated in a number of papers []. Both GLs and
GBLs, as well as multiple GL heterostructures with
the non-Bernal stacked (twisted) GLs can be used in
such THz devices [Q, ].

The possibility of the THz lasing arises when
the contribution of the interband radiative transi-
tions (both direct and indirect) to the real part of
the dynamic conductivity Reo at a certain frequency
surpasses the contribution of the intraband radiative
processes.

We have shown recently [@, @] that the indirect
interband transitions in GLs and GBLs with a long-

range natural or artificial disorder can compensate
or even prevail over the indirect intraband transi-
tions. This leads to large values of |Reo|, even exceed-
ing the fundamental limits of the THz conductivity
associated with the direct transitions: o, = ¢?/4h for
GLs and 20Q for GBLs, where e is the electron charge
and £ is the Planck constant. Thus, implement-
ing an artificial disorder in GLs and GBLs, lead-
ing to the dominance of the carrier scattering with
relatively small variations of their momenta, can
liberalize the conditions of the negative THz con-
ductivity. In this paper, we propose the GBL-based
heterostructures with a spacer layer and an array of
metal particles on that layer (see Fig. ). This array
plays the dual role: first, it provides electron or hole
transfer (depending on the metal band parameters)
to the GBL and, second, boosts the carrier scattering
in the GBL. Due to the finite size of these particles
and their remote placement, their scattering poten-
tial can be rather long-ranged [@, @], providing
a pronounced modification of the carrier scattering.
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Fig. 1. Schematic views of D-GBL heterostructures with
metal particles atop of the spacer.

Similar “decorated” GBL (D-GBL) heterostruc-
tures were fabricated and used for some devices [@,
@]. Using a simplified device model, we calculate
the real part of the dynamic conductivity, Reo, and
its components associated with the intraband and
interband radiative processes, Res s and Recjng',
as functions of the radiation frequency, the density
of the array of metal particles, the particle size, [ ,

and the spacer thickness, d.
2. Device model and main equations

We consider D-GBL heterostructures with the inter-
band population inversion caused by the injection
(or optical) pumping. Figure [lf shows a schematic
view of this D-GBL heterostructure (with the side
injection contacts). For definiteness, we consider
the D-GBL heterostructures in which the residual
doping of the GBL (by acceptors) with the density
¥ is compensated by the electrons transferred from
the metal array (i. e. the metal array plays the role
of the remote donors). It is assumed that the charge
density in the metal array eZ > is equal to eX,,
where eZ_is the charge of a metal particle in the ar-
ray.

Possible band opening and the effect of ener
spectrum nonparabolicity are disregarded [@, @}],
and the energy spectrum is assumed to be ¢ = +p?*/2m
[[4], where m is the effective mass of electrons and
holes in the GBL.

The real part of the net dynamic conductivity in
the in-plane direction, Reg, is the sum of the contri-
butions associated with one direct (vertical), Rea,,

. . i int
and two types of the indirect, Resjn and Recing :

Reo =Reoq +Reo s +Reoins®. (1)

The quasi-Fermi energy of both electrons and
holes under sufficiently strong pumping is equal to
&, = mh*X/m (e, >T, where T is the effective carrier
temperature 7.

The quantity Reo, /o, is given by [El, ]

04 _ (ha)+2y1)t
oo (ho+y)

nh[ha) —2¢p j
4T
zzmh[mj,
AT

where y, =~ 0.35-0.43 €V is the inter-GL overlap in-
tegral. In the most practical case i, T <<¢,, Eq. (2)
yields Reg, = —20,,. .
To calculate the conductivity components Regpg"
ntra

and Reoj,q , we use the Fermi golden rule account-
ing for the scattering potential in the form

2
V(hq)z{—z”z }
k(g + qrp) 3)

x X, [1+Z, exp(-2qd -’12 /2)]

for the discrete acceptors in the GBL and the donor
type metal particles in the GBL. Here q = |p-p'|,
is the effective dielectric constant (i. e. the half-
sum of dielectric constants of the spacer mate-
rial, K and the substrate, K, K= (KSp + Ksub)/2),
4, = [8e2m(1 - In2)/h’k] is the Thomas-Fermi
screening wave number [B3]. The latter is independ-
ent of the carrier density due to the two-dimension-
al and parabolic character of the carrier spectra.
Actually, the potential distribution created by metal
particles, in particular, in the form of oblate highly
conducting spheroids [@] corresponds to a more
complex dependence of |V(hq)|* on q than that in
Eq. (3). However, for the sake of simplicity we as-
sume the q-dependence given by Eq. (3).

In the D-GBL heterostructures with metal par-
ticles, Z = CV /e, where C is the capacitance of
the metal particle and Vis the built-in voltage be-
tween the GBL and the metal particle. For the ob-
late disk-like metal particles, we put C = x_ I /16d,
where [ is considered as the metal particfe (sphe-
roid) diameter.

The scattering matrix element depends on the back-
ground dielectric constant x = (KSp +x,,/2), where
k, and x_, are the dielectric constants of the spacer
and the substrate (the layer beneath the GBL), re-
spectively, in particular via the dependence of q,..

As a result, in line with the previous calculations
[@, @] we arrive at the following formula:

1
(w/2m)?

intra

inter
Re(oing + Oing ) o€ X
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dgq

. { IQ 1+ (2 /d)exp(-2qd — ¢*1% /2)]
Onin (Orax — Qi (4 + 47 )’

4
1+ dYexp(-2gd —g*13/2)] } )

how (dmax [
-—| dgq
deg L (., — 4 a+q5)

Herey=xl /16e, hQ, =2 2me; (1-hw/de), hQ,, =
2\2meg (hw/4deg)s  hq,.=2Nmho, g, =0, SO that

the average momenta transferred by the electrons
and holes to the scatterers at the intraband and in-
terband transitions are equal to Q = (Quux ~Quin)/2 =
N2mey 11, § = (4 i) 2 =miheo /1.

As follows from Eq. (4), the relative contribution
of the indirect interband processes to the THz con-
ductivity is given by

intra inter

ReO’ind + Reo'ind ~1
Reojy*
i [1+(12 / dyexp(-2qd —q° I, 12)]
J, dag z
- 1 Y9min (g+q) (5)
2 J-Q dgq [1+(yl2 I dyexp(-2qd — q* I, 12)]
in (q tqr¢ )2

In particular, if V= 0.4 V, keeping in mind
the HfO, spacer of the thickness d = 1-2 nm (icsp =20
and y =~ 0.173-0.347 1/nm) and the substrate made
of hBN or other material like SiC with the similar di-
electric constant x_, (so that the effective dielectric
constant ¥ = 10), for d = 1 nm and /_ = 10 nm, we
obtain Z_ =y’ /d ~ 34. In the case of the HfO, spacer
and substrate, setting d = 1-2 nm and / =10 nm, we
find Z =~ 17-34.

3. Results

Figures , H, and @ show the frequency dependenc-
es of the indirect process contribution to the THz
conductivity Re(dind’ + oind') calculated for the D-
GBLs with the HfO, spacers and the hBN (SiC)
and HfO, substrates and different sizes of the metal
particles and the spacer thickness d. It is assumed
that ¢, = 60 meV and V_ = 0.4 eV. One can see that
the absolute value of the contribution of the indi-
rect interband processes to the THz conductivity
(which is negative) can exceed that of the indirect
intraband processes (corresponding to the Drude
absorption) and, hence, Re(oing” + oind') becomes
negative in a certain range of the frequency. The for-
mer contribution markedly increases with decreas-
ing the spacer thickness d (compare Figs. P and H).

0.10

0.05;-
0

~0.15 i

Re (cing* + oing") (a.u.)

-0.20-4=

02,55 6 7 8 9 10

Frequency, w/2m (THz)

intra inter

Fig. 2. Frequency dependences of Re (0ind +0ind )
for D-GBL with the HfO, spacer of the thickness
d =2 nm and the hBN or SiC substrate (y = 0.173 and
K=(k,+ k)2 = 10) calculated for different sizes, /_,
of metal charged particles.

This is because smaller values of d correspond to
a larger capacitance C and, consequently, to higher
charges of the metal particles. The latter, in turn,
leads to the reinforcement of the carrier scattering
on a long-range potential of these particles. An in-
crease in the effective dielectric constant x (due to
an increase in the substrate dielectric constant x_,)
results in a weaker screening of the scattering po-
tential and, hence, a smoother scattering potential
(compare Figs. H and H). The same takes place if
the charged metal particles become larger. As seen
from Figs. @—H, the relative contribution of the in-
direct interband processes varies from being small
at small [ (when the scattering potential is relatively
sharp) to dominating at sufficiently large [ .
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Fig. 3. The same as in Fig. 2, but for the HfO, spacer with
d=1nm, y=0.347, and « = 10.
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Fig. 4. The same as in Fig. 3, but for the HfO, spacer and
substrate: d = 1 nm, y = 0.347, and x = 20.

When the effects under consideration are suf-
ficiently strong (like in the case of [ = 15 nm in
Figs. —@), the net THz conductivity Reo can be not
only negative, but its absolute value |[Reo| can also
pronouncedly exceed the contribution of the direct
interband transitions. Indeed, when ¢, = 60 meV
(as above), setting the carrier momentum relaxa-
tion time in the GBL equal to 7 = 1 ps (that corre-
sponds to the carrier mobility y =~ 4 x 10* cm?/V's) at
w/2m = 8 THz for the D-GBL heterostructures cor-
responding to Figs. P and H with [ =15 nm, using
Eq. (1) and the data from Figs. @ and H, we obtain
Reo = -3.36 0, and Reo = -9.78 0, respectively.

The reinforcement of the negative contribution
to the net THz conductivity associated with the in-
direct interband transition leads to a shift of the fre-
quency w /27 at which this conductivity changes its
sign to somewhat smaller values.

Thus, the “decoration” of the GBL heterostructures
can provide the situations when under the pump-
ing conditions the indirect interband processes
in D-GBL heterostructures not only compensate
the Drude absorption but also result in a substantial
increase in the modulus of the negative THz con-
ductivity, i. e. higher THz gain in the D-GBL-based
lasers.

4. Conclusions

We proposed to use the GBLs decorated by the ar-
rays of metal particles. Such particles play the role of
remote donors (or acceptors) for the active region of
THz lasers based on such D-GBL heterostructures
and using the interband transitions under the injec-
tion (or optical) pumping. The interaction of the in-
jected carriers with the long-range scattering poten-

tial created by the array of charged metal particles in
such D-GBL can result in the dominance of the indi-
rect (scattering assisted) interband radiative processes
over the indirect intraband (Drude) processes. This
might result in the enhancement of the THz gain in
the D-GBL lasers and in the shift of the spectrum to-
ward smaller (a few THz) frequencies.
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