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A brief summary is made of the models used to describe the interaction between electrons and polar optical phonons in nano-
structures. Simpler models are compared with the model that describes optical modes that satisfy both mechanical and electrical 
boundary conditions. Satisfaction of these boundary conditions requires modes to be a linear combination (LC) of longitudinal 
(LO), transverse (TO) and interface (IF) modes. The role of lattice dispersion turns out to be crucial. If accuracy is not essential, 
the simple models can provide adequate results, provided that coupled-mode and hot-phonon effects are absent.
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1. General

In the  study of transport phenomena in semicon-
ductor nanostructures the interaction between elec-
trons and phonons assumes a  central significance 
because of its intrinsic nature. In principle, scatter-
ing due to impurities, lattice defects and interface 
roughness can be eliminated. In practice, techni-
cal innovation regarding purification and crystal 
growth can make non-phonon scattering subordi-
nate in many structures at room temperature, and 
likely to be dominant only at low temperatures, 
where the excitation of lattice vibrations is weak, but 
even there, the electron–phonon interaction cannot 
be ignored when the electrons become hot in high 
electric fields. The only other scattering mechanism 
that is not readily amenable to ideal crystal growth 
is that due to alloy fluctuations. Otherwise, in unal-
loyed binary semiconductors, the electron–phonon 
interaction is of central importance.

In nanostructures both electrons and phonons 
are confined, and a description of the electron–pho-
non interaction must necessarily contain models of 
confinement. The confinement of electrons is deter-
mined by the  potential barrier at each interface of 
the structure. The boundary conditions that have to 

be satisfied are the  continuity of the  wavefunction 
and its gradient. In many cases, the  condition af-
fecting the gradient of the Bloch function, u(r)F(r), 
where F(r) is an envelope function, is satisfactorily 
replaced by m*–1dF(z)/dz, where m* is the effective 
mass and z is along the normal to the  interface [1, 
2]. Or, more simply, in cases where the  barrier is 
high, the  boundary condition reduces to F(z)  =  0. 
The  model of electron confinement, as outlined 
above, is uncontroversial.

The same cannot be said of the  models of con-
finement of optical phonons. The boundary condi-
tions affecting acoustic modes – continuity of parti-
cle displacement and of elastic stress – are the ones 
of classical physics and, again, uncontroversial. 
The boundary conditions for optical modes are more 
complex, and their elucidation is relatively recent [3, 
4]. Previous to this, three models were proposed. 
The first simply ignored optical phonon confinement 
entirely and calculated the  electron–phonon inter-
action using bulk modes [5]. We label this the 3DP 
model. Surprisingly, the result proved to be close to 
the result for confined phonons. The second focused 
on the electric fields of the polar modes and rede-
fined the  medium as a  dielectric continuum (DC). 
Following the  treatment of the polar slab by Fuchs 
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and Kliewer [6], the  DC model takes the  phonon 
spectrum to be confined longitudinal optical (LO) 
modes at the zone-centre frequency plus two inter-
face (IF) modes, the frequency of one deriving from 
the  well material, the  other from the  barrier(s), 
all satisfying the  classical electrical boundary 
conditions – continuity of electric potential and of 
normal electric displacement. Again, surprising-
ly, the  results proved to be close to those derived 
from more accurate models. However, the  form of 
the  mode patterns revealed by Raman scattering 
was not that of the DC model. Nor, obviously, could 
the DC model be applied to any non-polar system, 
such as Si/Ge. The  third model ignored electrical 
boundary conditions and assumed that the relevant 
boundary conditions were those of acoustic modes, 
those also of hydrodynamics [7]. The hydrodynam-
ics (HD) predicted exactly those observed by Ra-
man scattering [8], and it was a model that was ap-
plicable to non-polar materials. The model assumed 
that the  elastic stress for optical modes was of 
the same form as for acoustic modes, which proved 
to be true for non-polar material, but not for polar 
material. An analysis by Akero and Ando [9], based 
on the linear-chain model, showed that the correct 
boundary condition must include the  variation of 
the ionic masses, which the classical boundary con-
ditions for acoustic modes do not. It was clear that 
none of the three models was correct.

From the  classical study of acoustic modes in 
a  non-polar slab, it was found that the  acoustic 
boundary conditions could not be satisfied for a sin-
gle mode with components of particle displacement 
along the normal to the surface. For such cases it was 
necessary for there to be a coherent linear combina-
tion of longitudinal acoustic (LA) and transverse 
acoustic (TA) modes. It became clear that the  sat-
isfaction of both mechanical and electrical bound-
ary conditions required a coherent linear combina-
tion (LC) of LO, TO and IF modes. But the form of 
the mechanical boundary condition involving stress 
remained unclear. Fortunately, this problem could 
be bypassed in many cases of interest by exploiting 
the  large disparity of frequency and other proper-
ties between the barrier and well and assuming that 
the  ionic displacement vanished at the  interface. 
This allowed the  correct eigenmodes to be estab-
lished [10–13], and was shown to give results in 
close agreement with those obtained by computer 
intensive microscopic modeling [14]. An analytical 
microscopic model became available [3] that con-
firmed the  dependence on mass shown by Akero 
and Ando and defined the  mechanical boundary 
conditions for optical modes. The  LC model with 

these mechanical boundary conditions along with 
the usual electrical boundary conditions is the most 
accurate analytical continuum model available.

2. Dispersion

Unlike other models, the  LC model takes full ac-
count of lattice dispersion. In a  long-wavelength 
approximation, it takes the frequency of the hybrid 
mode to be quadratic in the wave vector

ω2 = ωL
2 – vL

2q2, (1)

where ωL is the  zone-centre frequency and vL is 
the velocity. In the simplest model, vL is just the ve-
locity of the  LA mode. Dispersion has important 
consequences. The first is the effect on the dielectric 
functions associated with the reduction of frequen-
cy with the  wave vector. For the  LO component, 
the permittivity becomes

 
, (2)

where ωT is the  zone-centre TO frequency. This 
means that for the  LO component ε(ω)  =  0 for all 
wavevectors. The fundamental dispersion for the IF 
component is electromagnetic, which makes qz

2 = –
qx

2 in the unretarded limit. However, as a coherent 
component of the  LC model, it must have the  fre-
quency of the LO component. Thus

. (3)

Moreover, the electric field associated with the IF 
component and its ionic displacement, u, is as fol-
lows:

E = – α0s(ω)u, (4)

 
,  (5)

 
.  (6)

Here,  -M is the reduced mass, V0 is the volume of 
the unit cell, ε∞, εs are the high-frequence and static 
permittivities, and s(ω) is the field factor, which, un-
like the  case for the  LO component, reduces from 
unity by dispersion.

For q = 0, the dielectric function vanishes for both 
LO and IF components. As a consequence, the elec-
tric field at the  interface is zero when u  =  0, and 
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there is no leakage of fields from the well to barrier 
and vice versa. A significant consequence of disper-
sion is the generation of fields at the interface, even 
though u = 0, because of the difference of the dielec-
tric function and field factor between the LO and IF 
components. This difference introduces two aspects 
of the LC model regarding the interaction with elec-
trons – LO-like and IF-like. The LO-like interaction 
occurs at all frequences determined by dispersion; 
the IF-like interaction occurs only at the frequence 
at which the sum of the permittivities of the well and 
barrier equals zero, which occurs typically at a large 
wave vector.

Without dispersion, the  TO component could 
not exist. The  TO dispersion in the  quadratic ap-
proximation is

ω2 = ωT
2 –vT

2q2. (7)

Coherence with the  LO mode is obtained at 
the wave vector given by

 (8)

The z component must be imaginary and, typically, 
very large. The TO component is therefore evanescent 
and severely confined to the interface. As it has no elec-
trical activity, and away from the surface its amplitude 
becomes infinitesimal, its action in the  mechanical 
boundary condition is simply to ensure that ux = 0 – its 
mechanical energy can be ignored. In this case the ef-
fective boundary condition reduces to uz = 0. This pro-
vides a useful simplification. Nevertheless, dispersion 
complicates the  calculation of the  electron scattering 
rate in calling for numerical analysis. This is one rea-
son why simpler models – the 3DP and DC – retain 
popularity.

3. Coupled modes and hot phonons

However, those simple models are inadequate for 
treating the  important practical cases where high 
electron densities and high electric fields introduce 
the phenomena of coupled plasmon–phonon modes 
and hot phonons. Plasmon coupling introduces 
extra dispersion, and high fields produce hot elec-
trons, which, in turn, forces the phonon population 
to deviate from thermodynamic equilibrium. Any 
description of these effects will have to take into ac-
count variations depending on the  frequence and 
wave vector, and this precludes simple models and 
calls for the LC approach.

4. Conclusions

Where coupled-mode, hot-phonon and other phe-
nomena dependent on special frequence or wave 
vector are absent, simpler models can be very use-
ful, not only for obtaining approximate estimates 
for scattering rate, but for suggesting new effects. 
An example was the  speculation of Požela and his 
group [15, 16] on the effect of inserting a monolayer 
into a  quantum well, which stimulated consider-
able theoretical activity, resulting in the refinement 
of the LC model and the recognition of LO-like and 
IF-like aspects.

Although the LC model has general application, 
in practice, it has been used with the  assumption 
that the  ionic displacement vanishes at the  inter-
face. This assumption becomes questionable in sys-
tems such as the Ga1-xAlxAs nanostructure when x is 
small. In this case the correct mechanical boundary 
conditions as given by microscopic models must be 
used.
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