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Despite a recent flurry of applications of the broadly defined (‘non-AdS/non-CFT’) holographic correspondence to a variety of 
condensed matter problems, the status of this intriguing, yet highly speculative, approach remains largely undetermined. Here we 
expose a number of potential inconsistencies between the previously made holographic predictions and advocate for a compelling 
need to systematically contrast the latter against the results of alternate, more conventional, approaches as well as experimental 
data. It is also proposed to expand the list of computed observables and utilize the general relations between them as a further 
means of bringing the formal holographic approach into a closer contact with the physical realm.
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1. Introduction

Quantum many-body theory has long been seeking 
to expand its toolbox of computational techniques, 
thus allowing one to describe and classify a  broad 
variety of non-Fermi liquid (NFL) states of strongly 
correlated fermions.

In generic 1d fermion systems, the  conventional 
Fermi liquid behaviour gets (marginally) destroyed by 
an arbitrarily weak short-ranged repulsive interaction, 
thereby giving way to the  so-called Luttinger behav-
iour. As one of the hallmarks of the Luttinger regime, 
the electron propagator exhibits an algebraic decay with 
distance/time, G(x) ∝ 1/xΔ, governed by an anomalous 
dimension Δ  >  1. Moreover, long-range interactions, 
such as Coulomb, modify the Fermi liquid behaviour 
even more drastically, resulting in, e. g. the 1d Wigner 
crystal state where the fermion propagator decays fast-
er than any power law, G(x) ~ exp(–#ln3/2 x).

In higher dimensions, the Fermi liquid is generally 
believed to be more robust, although it is not expected 
to remain absolutely stable. While in the case of short-
ranged repulsive interactions any departures from 
the Fermi liquid are likely to be limited to the  strong-
coupling regime, long-ranged couplings can possibly re-
sult in the NFL types of behaviour without any threshold.

Of a  particular interest are the  spectroscopic and 
transport properties of such emergent critical behav-
iours as incipient s-, p-, and d-wave charge/spin density 
waves and orbital current-type instabilities in itinerant 
(anti)ferromagnets, quantum spin liquids, compressible 
(‘composite fermion’) Quantum Hall states, etc. Recently, 
the focus has also been on the d > 1-dimensional zero 
density (‘neutral’) Dirac/Weyl systems characterized by 
the presence of isolated points (‘nodes’) or lines (‘arcs’) of 
vanishing quasiparticle energy.

The intrinsic complexity of these systems has long 
been recognized, prompting the  use of such sophisti-
cated techniques as the renormalization group, 1/N- and 
ϵ-expansions, Keldysh functional integral and quantum 
kinetic equation, supersymmetric diffusive and ballistic 
σ-models, multi-dimensional bosonization, etc. In spite 
of all the efforts, however, the overall progress towards 
a  systematic classification of various ‘strange’ metallic 
(compressible) states that are often indiscriminately re-
ferred to as ‘higher dimensional Luttinger liquids’ has 
been rather slow.

In that regard, the  recent idea of a  (broadly de-
fined) holographic correspondence [1–4] could pro-
vide a  sought-after powerful alternative technique. 
Specifically, its widely used ‘bottom-up’ version may 
offer an advanced phenomenological framework for 
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discovering new and classifying the  already known 
types of NFL behaviour.

Although in much of the  pertinent literature 
the validity of the generalized (‘non-AdS/non-CFT’) 
holographic conjecture appears to be taken for grant-
ed, it might be worth keeping in mind that the actual 
status of the  entire holographic approach remains 
anything but firmly established.

Indeed, in most of its applications this bold adap-
tation of the  original ‘bona fide’ string-holographic 
correspondence does not seem to be subject to much 
(or, for that matter, any) of the  former’s stringent 
symmetry conditions, as the  pertinent non-relativ-
istic systems at finite density and temperature, in 
general, tend to be neither very strongly coupled nor, 
conformally, Lorentz or even translationally/rotation-
ally invariant and lack any supersymmetry or even an 
ordinary gauge symmetry with some rank-N > 1 (let 
alone, N >> 1) non-abelian group.

While some agreement between the  holographic 
predictions and certain selectively chosen experimen-
tal data (usually pertaining to those situations where 
the extreme strongly-correlated hydrodynamic regime 
can indeed be attained) has been claimed, there is still 
no consensus on neither the ultimate implications of 
such circumstantial evidence nor the general applica-
bility conditions of the holographic approach itself.

The precious few examples of a quantitative agree-
ment between the  holographic approach and other 
(e.  g., Monte Carlo) techniques involve some care-
fully tailored gravity duals (whose physical nature 
still remains rather obscure). Conspicuously, though, 
the best quantitative agreement has been achieved in 
those cases where the  allegedly all-important N  >>  1 
condition does not seem to play much of a role, as in 
the 2d Bose-Hubbard (or quantum XY-) model with 
N = 2 [5–9].

In other cases, under a closer inspection the pur-
ported agreement appears to be largely limited to 
a purely visual similarity between the results of some 
(for the most part, numerical) calculations and cer-
tain selected sets of the available experimental data.

For one, in Ref. [10–13] the holographically com-
puted optical conductivity was claimed to agree (over 
less than half of a decade, 2 < ωτ < 8) with the enigmat-
ic power-law decay, σ(ω) ~ ω–2/3, observed in the nor-
mal state of the superconducting cuprates (BSCYCO), 
pnictides, and certain heavy fermion materials, often 
up to the energies of eV order. Notably, the original 
claim was not corroborated by the  later analysis of 
Ref. [14] and was also argued to be intermittent with 
the ‘more universal’ ~1/ω behaviour [15, 16].

Also, while being traditionally wordy and profuse 
on the auxiliary technical details, many of the works 

on holography end up with rather simple scaling re-
lations as their final answers, thereby suggesting that 
there might be more economic and physically illumi-
nating ways of obtaining such results.

Thus, in order for its status to be definitively as-
certained, the holographic approach needs to be as-
sessed critically and applied to those systems where 
a  preliminary insight can be (or has already been) 
gained by some alternative means, so that a system-
atic comparison with the holographic results can be 
made. Also, in order to demonstrate their predictive 
power the  holographic calculations would have to 
be performed for as many observables as possible 
and then applied to the host of experimental data on 
the  documented NFL materials. This communica-
tion takes a step towards filling in the gap.

2. Practical holography of condensed matter 
systems

In its original formulation, the holographic principle 
postulates that certain d + 1-dimensional ‘boundary’ 
field theories allow for a dual description involving, 
alongside other ‘bulk’ fields, d + 2-dimensional grav-
ity. Moreover, when the boundary theory is strongly 
coupled, the  higher-dimensional gravity appears to 
allow for a  semiclassical treatment, thus facilitating 
a  powerful new approach to the  problem of strong 
interactions.

So far, the  holographic approach has been op-
portunistically applied to a variety of systems which 
includes ‘strange’ Fermi and Bose metals describing 
quantum-critical U(1) and Z2 spin liquids, itinerant 
(anti)ferromagnets, quantum nematics, Mott tran-
sitions in lattice and cold atom systems, Hall effect, 
graphene, etc.

On the gravity side, the system in question would 
be characterized by a  (weakly) fluctuating back-
ground metric gμν = g(0)

μν (r) + δgμν(t, →x, r) determining 
the interval

 
. (1)

The early applications of the holographic approach 
revolved around a handful of the classic ‘black brane’ 
solutions, such as the Reissner–Nordstrom AdS (anti-
de-Sitter) black hole with the metric

, (2)

where the emblackening factor f(r) vanishes at the ho-
rizon of radius rh which is inversely proportional (os-
tensibly, similar to the case of the Schwarzschild black 
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hole in the  asymptotically Minkowski space-time, 
despite the  variable’s r being the  inverse of the  ac-
tual radius in the  d  +  1-dimensional bulk space) to 
the Hawking temperature T shared by the bulk and 
boundary degrees of freedom. The  explicit form of 
this function depends on how the  gravito-electro-
magnetic background is described.

In the black brane geometry of the minimal Ein-
stein–Maxwell theory, one has fEM(r)  =  1  –  (r/rh)

d+1, 
whereas in the Dirac–Born–Infeld (DBI) theory with 
the Lagrangian

 (3)

geared to the strong-field limit  , en being the boundary density of electric charge.
In the early works on the  subject, the metric (2) 

was claimed to provide a  potential gravity dual to 
the  class of strongly correlated condensed matter 
problems  –  most notably, heavy fermion materials 
and cuprates – which are believed to manifest a cer-
tain ‘semi-locally critical’ behaviour [17–23]. How-
ever, soon thereafter it was realized that the  corre-
sponding physical scenario appears to be too much 
limited to encompass more general types of the real-
life NFLs, so the focus shifted towards a broader class 
of geometries.

Further attempts of ‘reverse engineering’ have 
brought out such Lorentz non-invariant metrics 
as the  Shroedinger, Lifshitz, helical Bianchi, etc. 
Amongst them, a particular attention has been paid 
to the static, diagonal, and isotropic metrics with al-
gebraic radial dependence

. (4)

These exponents are defined modulo a change of 
the radial variable r → ρδ resulting in the substitution

α → αδ, β → βδ – δ + 1, γ → γδ. (5)

Unless γ = 0, the metric (4) is conformally equiva-
lent to the one

gtt ~ r2(θ/d–z), grr = gii ~ r2(θ/d–1) (6)

characterized by only two parameters

 (7)

which describe a  family of ‘hyperscaling-violating’ 
(HV) backgrounds [24–33] where the dynamical ex-
ponent z controls the boundary excitation spectrum 

ω ∝ qz, while θ quantifies a non-trivial scaling of the in-
terval ds → λθ/dds, the scaling-(albeit not Lorentz-) in-
variant (‘Lifshitz’) case corresponding to θ = 0.

The finite-T version of the HV metric can be con-
structed by decorating (6) with the additional factor 
fHV(r)  =  1  –  (r/rh)

d+z–θ, akin to Eq.  (2), which intro-
duces the black brane’s horizon located at rh ~ T–1/z.

The physically sensible values of z and θ are expect-
ed to satisfy the all-important ‘null energy conditions’

(d – θ) [d(z – 1) – θ] ≥ 0, (z – 1) (d + z – θ) ≥ 0  (8)

signifying a  thermodynamic stability of the  corre-
sponding geometry.

The HV metrics have been extensively discussed 
in the content of various generalized gravity theories, 
including those with massive vector fields as well as 
the  Einstein–Maxwell dilaton (EMD) theory which 
includes an additional scalar field, alongside the cos-
mological constant term [24–33]

. (9)

In its minimal version, both the  dilaton potential 
U(ϕ) and the effective gauge coupling V(ϕ) are given 
by some exponential functions of ϕ.

At the (semi)classical level, gravitating matter added 
to the EMD Lagrangian (9) can be described in terms 
of its energy-momentum tensor and electric current

Tμν = (E + P)uμuν + Pgμν, Jμ = en uμ,

where en, E, P, uμ are the charge and energy densi-
ties, pressure, and (covariant) local velocity, respec-
tively. The  first law of thermodynamics then relates 
the above quantities as follows:

E + P = ST + μn, (10)

where S is entropy density and μ  =  eAt(r)|r  →  0 is 
the chemical potential. In the particle-hole symmet-
ric (‘neutral’) system μ = 0 and the equation of state 
reads E = (d – θ)P/z.

The HV solutions (6) have also been obtained 
by taking into account a  back-reaction of matter 
on the  background geometry [34, 35]. Such analy-
ses would typically use the Fermi distribution when 
summing over the  occupied fermion states, thereby 
achieving a partial account of the (Hartree-type) ef-
fects of the  Fermi statistics, while leaving out more 
subtle (exchange and correlation) ones.

However, for an already chosen gravitational back-
ground the  customary way of introducing a  finite 
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charge density into the holographic scheme is by em-
bedding a D-brane into such geometry and treating 
it in the  probe approximation (no back-reaction). 
The pertinent dynamics is then described by the DBI 
action (3) with the background electric field

. (11)

The DBI approach has been used to study thermo-
dynamics of the HV theory. In that regard, in Refs. 
[36–38] the specific heat of a finite density (‘charged’) 
system was found to scale with temperature as

CDBI, charged ~ T–2θ/zd. (12)

Being primarily interested in the  limit z  →  ∞,  
– θ/z → const, the authors did not seem to be particu-
larly concerned with the implications of this result, 
including its apparent inapplicability in the  poten-
tially physically relevant case of θ  =  d  –  1  >  0 (see 
below).

Moreover, even for θ  =  0 Eq. (12) differs from 
the  expression obtained in the  earlier work of Refs. 
[39, 40] where the  standard (‘black-body’) lead-
ing term ~Td/z was deliberately discarded in favour 
of the subdominant (yet, charge density dependent) 
one, ~T2d/z/en.

Nevertheless, Eq.  (12) can be rationalized by 
comparing it to the result of a direct calculation for 
the HV metric (6) and μ = 0:

. (13)

Physically, this expression can also be recognized as 
the  number, rather than the  charge density n(T) of 
thermally excited carriers (of either sign).

One subtle point is that in the charged case it is 
not the latter but the charge density that gets replaced 
with a finite value at not too high temperatures. Based 
on that insight, the entire temperature dependence in 
Eq. (12) should then be attributed to the effective (T-
dependent) charge

e ~ T2θ/dz, (14)

while the charge density itself scales as the ratio be-
tween Eqs. (12) and (13):

en = CDBI,neutral/CDBI,charged ~ T(d–θ)/z. (15)

The temperature dependence (13) would also be 
shared by the concomitant thermal entropy

SDBI ~ n ~ T(d–θ–2θ/d)/z. (16)

Notably, this result of a straightforward thermodynam-
ic calculation appears to be at odds with both the naive 
estimate

for the Bekenstein–Hawking entropy, a black d-brane 
of radius rh, as well as the entanglement entropy

Sent ~ T(d–θ)/z, (17)

the relation that would often be quoted ad hoc with 
regard to the empiric interpretation of the parameter 
θ as a ‘defect of dimension’ that yields the effective di-
mension deff = d – θ in the above expression for SBH.

The proper choice of θ has been extensively discussed 
in the context of fermionic entanglement entropy which 
points to the value θf = d – 1, consistent with the no-
tion of the Fermi surface as a d – 1-dimensional mani-
fold spanning the tangential directions in the reciprocal 
(momentum) space of the boundary theory [41, 42].

In fact, by adhering to the above value one chooses 
to treat the HV system in question as fermionic and, 
therefore, must use the  fermion quasiparticle disper-
sion ω ~ (k – kF)

zf to determine the value of the dynam-
ical index. In what follows, the metric with the para-
meters z = zf, θ = d – 1 will be called ‘Model I’.

Alternatively, one could treat the system as bosonic 
and use the  value zb deduced from the  dispersion of 
the bosonic mode, ω ~ kzb. A straightforward choice for 
the HV parameter would then be θ = 0, thereby reduc-
ing the corresponding metric back to the Lifshitz one 
(hereafter, ‘Model II’).

Yet another possibility corresponds to choosing 
z = zf and θ = d(1 – zf/zb), which choice will be called 
‘Model III’. In fact, the  two latter metrics are related 
by a conformal transformation, so some of the results 
turn out to be the same in both cases. And, lastly, there 
also exists a choice z = zb and θ = d – zb/zf which will be 
referred to as ‘Model IV’ below.

3. Scaling properties of hyperscaling-violating 
systems

The above exposition of the physically incomprehen-
sible holographically computed specific heat suggests 
that any substantive comparison with the calculations 
performed by alternate techniques would have to in-
volve more than one quantity.
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Indeed, a power-law behaviour of the specific heat 
is just one of the  many scaling laws which describe 
quantum-critical systems. The list of other observables 
includes (tunneling) density of states, charge, current, 
and spin susceptibilities, electrical, thermal, and spin 
conductivities, shear and bulk viscosities, etc.

In the  quantum-critical regime of a  massless 
(m  =  0) and particle-hole symmetric (or neutral, 
μ = 0) system, the single most important scale is set by 
temperature T or frequency ω, whichever is greater.

The anticipated algebraic behaviour of a physical 
observable A is then fully characterized by its scaling 
dimension [A], namely:

A(ω, T) ~ max |T, ω|ΔA, ΔA = [A]/z.

Although in the  following discussion no distinction 
is made between the  exponents controlling the  fre-
quency and temperature dependences, this point will 
be addressed later.

Once a new scale enters the game, the pure alge-
braic dependences would only hold at high enough 
frequencies and/or temperatures, while at smaller 
ω or T any pure power-law gets complemented by 
a universal function of the ratios between T and all 
the competing scales (m, μ, etc.). Also, in the case of 
the  vanishing exponent one can encounter a  loga-
rithmic dependence ~ log max|T, ω| stemming from 
either the quantum Anderson localization or the clas-
sical ‘long-tail’ behaviour [43].

The scaling analysis begins with a proper assign-
ment of the scaling dimensions under transformation 
of the space-time coordinates in the boundary theory.

The basic scaling dimensions of the space-time co-
ordinates and their conjugate energies/momenta take 
their natural values

[xi] = –[ki] = –1, [t] = –[ϵ] = –[μ] = –[T] = –z     (18)

consistent with the  underlying dispersion relation 
ω  ~  kz, whereas those of the  gauge potential differ 
from the above values by the dimension of the effec-
tive charge (14)

[Ai] = [ki/e] = 1–2θ/d, [A0] = [μ/e] = z – 2θ/d.   (19)

For comparison, in Ref. [49] instead of attributing 
the ‘subleading’ term ϕ = 2θ/d in the above expres-
sions (cf. Eq. (3.6) in Ref. [49]) to the dimension of 
the electric charge (14), thus distinguishing between 
the number and charge densities (or, for that matter, 
μ and A0  =  μ/e which Ref. [49] makes no distinc-
tion of), the gauge sector was assigned its own HV 
parameter θm.

Moreover, it was argued in Ref. [49] that introduc-
ing an extra parameter (either θm or ϕ) in addition 
to z and θ is necessary for the proper description of 
a charged system with the HV geometry.

As yet another generalization, in Ref. [49] the spa-
tial dimension of the gauge and/or matter degrees of 
freedom ds was allowed to be different from that of 
the  gravitational ones. However, the  dimensions of 
the energy densities (as well as entropies) in the gravi-
tational and gauge/matter sectors can still be made 
equal, provided that the following condition is satisfied:

θ = d – ds + θm + ϕ. (20)

In fact, for d = ds and the original DBI action (3) this 
condition would be impossible to meet for any θ ≠ 0, 
as the pertinent value of the gauge HV parameter is 
θm,DBI = dsθ/d [49]. The overall entropy then consists of 
the two different contributions given by Eqs. (16) and 
(17), the  latter being dominant only in the custom-
ary holographic ‘large N’ limit (albeit not at the lowest 
temperatures for a physically relevant θ > 0).

This observation exposes an intrinsic deficiency of 
the DBI approach when it is applied to the standard 
(i. e., 2-parameter) charged HV systems where no 3rd 
independent parameter (either ϕ or θm) exists. Its pur-
ported applications to the condensed matter systems 
with N ~ 1 may, therefore, require extra caution.

Such subtleties aside, Eqs. (18) and (19) yield 
the derivative scaling relations

[vi] = [xi/t] = z – 1, [∇iT] = z + 1,

[εi] = [Ai/t] = [A0/xi] = z + 1 – 2θ/d,

[Βi] = [Aj/xk] = 2 – 2 θ/d, (21)

where vi, Ai, εi, Βi are the velocity, vector potential, 
electric and magnetic fields, respectively.

The dimensions of the energy and number densi-
ties can be read off directly from Eq. (13):

[E] = [P] = [Ttt] = [Tij] = [μn] = z + d – θ – 2θ/d.   (22)

Then, in order for the boundary action to maintain 
scale invariance, a spatial integration must be thought 
of as contributing the extra dimension

[dx] = – [n] = –d + θ + 2θ/d, (23)

under this convention the total (quasi)particle num-
ber ∫ n dx is dimensionless and, therefore, conserved. 
In contrast, the total charge ∫ en dx appears to scale 
with the non-vanishing dimension (14) imposed by 
the ‘running’ dilaton-dependent gauge coupling.
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Granted that in the holographic literature the par-
ticle number and charge densities would often be used 
interchangeably, a potentially important difference be-
tween the two cannot be ignored when thermal, ther-
mo-electrical, or stress-related responses are studied, 
alongside the purely electrical one.

Also, while in a  typical holographic setting one 
would invariably view the  electric charge as a  con-
served quantity, the above discussion suggests that it 
should have really been the  particle number instead. 
Indeed, the  popular interpretation of the  bulk radial 
variable r (with its natural scaling dimension [r] = –1) 
as a  renormalization group parameter [1–4] would 
be much more consistent with the  notion of a  flow-
ing (hence, dimensionful and, therefore, r-dependent) 
renormalized charge, rather than a  scale-dependent 
total particle number.

Continuing with the  assignment of dimensions, 
those of the  electrical current and the  remaining 
components of the stress-energy tensor can be readily 
deduced from the conservation laws

.

In this way, one obtains

[Ji] = d + z – 1 – θ,

[Tti] = d – θ + 1 – 2θ/d,

[Qi] = [Tit] = d + 2z – 1 – θ – 2θ/d, (24)

where Qi is the thermal current.
It is also worth pointing out that in the absence of 

the Lorentzian symmetry the stress-energy tensor be-
comes non-symmetrical (cf. with Refs. [44–48] which 
dealt exclusively with the case of θ = 0, though).

The density susceptibility χ (related to the  charge 
one by the  factor e2), electrical σ and thermal κ con-
ductivities are then characterized by the following di-
mensions:

[χ] = [E/μ2] = d – z – θ – 2θ/d, (25)

[σ] = [Ji/εi] = d – 2 – θ + 2θ/d, (26)

[κ] = [Qi/∇iT] = d + z – 2 – θ – 2θ/d. (27)

The thus-found dimensions of the thermodynamic 
and kinetic coefficients allow one to construct their 
dimensionless universal ratios which are scale invari-
ant (hence, constant for μ  <<  T). Amongst those are 
the  standard Wilson and Wiedemann–Franz ratios 

whose vanishing dimensions follow from the  above 
Eqs. (13), (14 and (24)–(26):

 
. (28)

Should, however, a  new scale emerge, these ratios, 
albeit remaining dimensionless, would no longer 
remain constant. In fact, they may deviate strongly 
from their Fermi liquid values, thereby signalling, 
e. g., the formation of a strongly correlated (hydrody-
namic) quantum-critical state.

It is worth pointing out that Eq. (28) and alike ap-
pear to be remarkably robust with regard to chang-
ing the assignments of the basic dimensions given by 
Eqs. (18) and (19) (in the original version of this note, 
the same ratios were obtained under two more differ-
ent assignments).

As a means of lending further support to the above 
scaling relations, one can also reproduce the dimen-
sions (25) and (26) of the electrical and thermal con-
ductivities from the Kubo formulae

 (29)

and

,             (30)

where the use of the scaling rule (22) is instrumen-
tal. Also, while being irrelevant for the general scaling 
properties, a practically important distinction has to 
be made between the formally defined thermal con-
ductivity and that computed under the condition of 
vanishing electric current, the setup that more faith-
fully represents the actual measurement. The latter is 
given by the expression

–κ = κ – Tσα2,

where the thermopower (Seebeck coefficient) can be 
obtained from the Mott relation, α ~ T d ln σ/dμ.

As yet another independent check, the shear vis-
cosity

features the dimension

[η] = d – θ – 2θ/d,

which, together with Eq. (16), guarantees that the cel-
ebrated viscosity-to-entropy ratio η/S is indeed di-
mensionless.
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It can also be easily seen that the dimensions are 
consistent with the classical (Einstein’s) relations

σ = e2χD, η = D(E + P)/v2, (31)

where the  diffusion coefficient D  =  v2/  dГ contains 
a scattering rate Г expected to assume the universal 
linear form

Г ~ T (32)

in the quantum-critical regime, thereby allowing one 
to link the  kinetic and thermodynamic coefficients 
together [50].

Also, observe that the ratio between Eq. (22)

 (33)

is dimensionless and, therefore, constant in the neu-
tral massless case. As such, it should be contrasted 
against the proposal

which was put forward for θ = 0 in Ref. [51]. Their 
obvious discrepancy (even in this limit) stems from 
the  improper account of the velocity’s dimension in 
Ref. [51].

In the charged case (μ >> T), by using χc = dn / dμ 
and Eq. (10) one can cast the conductivity in the form

.

Should the rate Г then happen to be linear, as in Eq. 
(27), the  conductivity would exhibit the  ubiquitous 
in strongly correlated systems ~ 1/T behaviour [52], 
seemingly in agreement with various scenarios of 
the cuprates and other ‘strange metals’ that emphasize 
their proximity to one or another putative quantum-
critical point.

The above scaling relations can also be generalized 
to include anisotropic spatial geometries. In the sim-
plifying case of a  unidirectional rotationally aniso-
tropic metric [53–55]

gtt ~ –r2θ/d–2z, g||,|| ~ r2θ/d–2ω, grr = g┴,┴~r2θ/d–2             (34)

the scaling dimensions read

[t] = – z, [x||] = –1, [x┴] = – w,

[A||] = w – 2θ/d, [A┴] = 1 – 2θ/d,

[ε||] = z + ω – 2θ/d, [ε┴] = 1 + z – 2θ/d,

[J||] = d + z – 1 – θ, [J┴] = d + z + w – 2 – θ,

[n] = d + w – 1 – θ – 2θ/d, [Β] = 1 + w – 2θ/d,    (35)

where Β is a magnetic field perpendicular to both 
→
E 

and 
→
J.

Choosing the axes x and y along the || and one of 
the d – 1 ┴ directions, respectively, one obtains

[σxx] = d – 1 – w – θ + 2θ/d, (36)

[σxy, yx] = d – 2 – θ + 2θ/d, (37)

[σyy] = d + w – 3 – θ + 2θ/d. (38)

In the charged case, all the components are expected to 
be proportional to the density, as the Hall response of 
a particle-hole symmetric system vanishes identically. 
However, the  common density factors cancel out in 
the Hall angle

, (39)

where the linear proportionality of σxy to a weak mag-
netic field has also been taken into account.

Equations (36)–(39) agree with the results of Ref. 
[53–55] where only the case of θ = 0 was considered. 
A further generalization to the fully anisotropic case 
would also be quite straightforward.

It was concluded in Refs. [53–55] that both goals 
of reproducing the  linear resistivity and quadratic 
Hall angle characteristic of, e. g., the behaviour found 
in the superconducting cuprates cannot be achieved 
simultaneously, regardless of the choice of z and w.

For instance, by choosing z = 1, w = ½, θ = 0 one 
does obtain σxx ~ 1/T, cot θH ~ T2 in the charged case, 
although it can only come at the expense of acquiring 
a strong spatial anisotropy (now σyy ~ 1/T2, independ-
ent of w or d).

One can also check that having yet another avail-
able parameter θ does not change the  above conclu-
sions. For instance, in the  isotropic charged system 
(z = w = 1) one can get σxx,yy ~ 1/T by simply choos-
ing θ  =  d/2, but then the  concomitant Hall angle is 
cot θH ~ T.

It is also instructive to compare the  above scal-
ing dimensions to the predictions of the holographic 
‘membrane paradigm’ which offers simple integral 
expressions for such important thermodynamic char-
acteristics as charge susceptibility [56]

 (40)
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or enthalpy density

. (41)

For the HV geometry (6) Eq. (40) yields

e2χ ~ T(d–θ–z+2θ/d)/z (42)

which fully agrees with (14) and (24).
In contrast, the result of computing Eq. (41)

E + P ~ T(d–θ–z+2)/z (43)

is clearly at odds with Eq. (21) even for θ = 0, as long 
as z ≠ 1.

One can readily check that for any θ such discrep-
ancy cannot be fixed by adding any powers of the ve-
locity and, if taken at its face value, questions the va-
lidity of Eq. (41).

Moreover, the ‘membrane paradigm’ approach of-
fers a closed expression for the WF ratio [51]

. (44)

Physically, the WF ratio can be viewed as a measure 
of the energy dependence of the dominant scatter-
ing rate. The classic WF law stating a constancy of 
this ratio would be expected to hold in any regime 
dominated by (quasi)elastic scattering, including, 
e. g., the case of electron–phonon scattering either 
well below or well above the Debye temperature.

In the important case of a zero-density ‘relativis-
tic’ system with z = 1, the energy current appears to 
be identical to the momentum. As a result, the ther-
mal conductivity becomes infinite in the absence of 
momentum relaxation, thus making the  WF ratio 
diverge, in accordance with Eq. (44) for n = 0, and 
signalling an extreme form of the  WF law’s viola-
tion.

Now, if the  density appearing in Eq. (44) were 
to be interpreted as its zero-temperature value 
n(T = 0), then in the neutral case the WF ratio would 
diverge, regardless of the value of z. Conversely, if it 
were to be treated as the equilibrium T-dependent 
density of particles/holes with the dimension given 
by Eq. (13), then in the neutral system the r.h.s. of 
Eq. (44) would always be finite, including the  case 
of z = 1. Clearly, a further clarification on the condi-
tions under which Eq. (44) holds is warranted here.

The scaling analysis of the  quantum-critical re-
gime can also be extended to spin dynamics. A small 

field expansion of the  free energy yields the dimen-
sion of the spin susceptibility

[χs] = [E/B2] = d – θ + z – 4 + 2θ/d. (45)

However, there seems to be neither a  solid holo-
graphic result to compare with nor even a common-
ly accepted recipe for computing this quantity.

The few previous attempts range from using a ra-
dial equation for the variation of the vector potential 
δA┴ similar to Eq. (46) in the next Section [57]

or for the magnetic field itself δB = ∂||δA┴ [58, 59] to 
that for the spin connection δωt

xy ~ ∂xδgty [60] from 
which one can evaluate χs, as if it was just another 
response function of the Kubo type.

In particular, in the  2d case and for ω/T  >>  1 
the  thus-obtained result [58, 59], χs  ~  ω2/3, was 
claimed to compare favourably with that experi-
mentally observed in the  conjectured spin-liquid 
state of the quasi-2d materials YbRh2(Si1–xGex)2 and 
ZnCu3(OH)6Cl2. It can be easily checked, however, 
that the scaling dimension (45) does not appear to 
support the above estimate for any relevant values of 
z and θ (see below).

4. Many shades of holographic conductivity

Electrical conductivity has been computed for a va-
riety of holographic models and in a number of dif-
ferent ways. However, establishing a consistency be-
tween the results of different calculations (or a lack 
thereof) does not seem to have always been particu-
larly high of the agenda.

The most frequently employed calculation of 
the  electrical conductivity and other kinetic coef-
ficients is based on the  holographic adaptation of 
the Kubo formula [1–4]. It proceeds by solving lin-
earized equations for small variations of the electro-
magnetic potential δAμ and (possibly) such coupled 
component(s) of the metric as δgtx, and/or other de-
grees of freedom, depending on the field content of 
the bulk theory in question.

In the case of a generic electro-magneto-gravita-
tional background treated in the  customary probe 
limit by virtue of the  DBI action (3), the  relevant 
quasi-normal mode obeys the equation [36–38]
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           (46)

where

.

As per the standard holographic prescription [1–
4], the optical conductivity is then defined as the re-
flection coefficient of a radial in-falling wave

, (47)

where the Fourier-transformed function δAi(r, ω, k) 
and its derivative are evaluated at the boundary (a.k.a. 
the UV limit).

As one technicality, in order to compute Eq. (47) 
one first solves Eq. (46) in the opposite, IR or r → ∞, 
limit (which is also formally attainable by putting 
n = 0) where it reads

,       (48)

the coefficients being those of the metric (4).
Next, imposing the in-falling boundary condition 

at r → ∞ one obtains the solution

δAi ~ uvHv
(1)(u),

where v = 1/2 – γ/(1 + α – β) and u = ωrz/z, which then 
has to be matched with that of the equation obtained 
from (46) in the r → 0 limit by comparing the two in 
the region u ~ 1 where they overlap (which, in turn, 
requires one to take the small ω limit).

Skipping the algebra (unlike much-needed physi-
cal discussions of the results of this calculation, such 
formal manipulations, complete with all the auxiliary 
technical details, can be readily found in many of 
the pertinent papers), one obtains

σKubo ~ ω–2γ/(1+α–β). (49)

Somewhat surprisingly, instead of deriving this gen-
eral result once and for all, in much of the holographic 
literature this calculation would be performed anew 
for every equation of the type (48).

Also, observe that Eq. (49) is invariant under 
the transformation (5), in agreement with the afore-
mentioned conformal equivalence of the correspond-
ing metrics.

Barring the  fact that under the  aforementioned 
matching condition the  power-law dependence (49) 
is derived for low frequencies, this asymptotic behav-
iour and its analogues (see below) have been contrasted 
against the experimental data taken at energies up to eV 
(e. g. in the case of the cuprate superconductors [61]).

Applying Eq. (49) to the HV metric (6) paired with 
the  radial electric field (11), one obtains the optical 
conductivity of a charged (n ≠ 0) holographic system 

σKubo,charged ~ ω–(2/z)(1–θ/d) (50)

for small ω and z > 2(1–θ/d), while in the opposite 
case one gets σ ~ 1/ω. This result was reported in Refs. 
[36–38] (the first two of these references addressed 
only the limit z → ∞, – θ/z = const, though).

In the  neutral case, the  conductivity can be ob-
tained by expanding and solving Eq. (46) directly at 
the boundary (r → 0) where the electric field is negli-
gible, thereby yielding 

σKubo,neutral ~ ω(d–2)(1–θ/d)/z, (51)

and this estimate is in a  perfect agreement with 
the scaling dimension (25).

In turn, Eq. (50) can then be readily rationalized 
by observing that the ratio σKubo,neutral/σKubo,charged scales 
as the charge density (15), which in the neutral sys-
tem is played by the  density of thermally activated 
quasiparticles (of either charge sign).

Notably, in the 2d case Eq. (51) allows for no faster 
than logarithmic dependence. Besides, there seems 
to be little difference between the  general HV and 
the  Lifshitz (θ  =  0) geometries. In that regard, it is 
worth mentioning that the experimentally measured 
optical conductivity of a neutral (undoped) 2d Dirac 
metal, such as graphene, indeed appears to be nearly 
constant (~e2/h).

Specifically, in Refs. [62–66] the latter was found 
to behave as

 
, (52)

where the  logarithmically running effective charge 
g(T)  ~  1/logT represents the  effect of the  Coulomb 
interactions.

In the higher dimensions d > 2, according to Eq. 
(51) the  conductivity of a  neutral system generally 
vanishes for ω → 0, regardless of the value of z, and 
this behaviour is consistent with the  intrinsically 
semi-metallic nature of such systems. In the pertinent 
example of the 3d ‘Weyl metal’ where z = 1 it was re-
cently found that Δσ = 3–4M with |M| < 1/2 [67, 68].

,
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It is again instructive to compare Eqs. (50, 51) to 
the predictions of the  ‘membrane paradigm’ which 
also provides a  simple algebraic expression for 
the low-ω value of the conductivity. The latter is cast 
solely in terms of the geometry at the  (necessarily, 
non-degenerate) horizon (thus, such results would 
not be applicable to the extremal black branes) with-
out the need of solving any diferential equations.

Furthermore, this approach can also be extend-
ed to include a  magnetic field. To the  first order in 
the  weak field Β, both the  diagonal and off-diago-
nal components of the DC conductivity tensor take 
the following closed form [53–55]:

 (53)

where ϕ0 is the fixed point value of the dilaton.
Notably, at ϕ0 = 0 the first of Eq. (53) reproduces 

Eqs. (50) and (51) for n ≠ 0 and n = 0, respectively, 
whereas the second one appears to be fully consistent 
with the scaling dimension (37).

The problem, however, is that, contrary to Eqs. 
(50) and (51), Eq. (53) is supposed to be evaluated at 
the horizon, rather than the boundary.

In general, the local conductivity defined accord-
ing to Eq. (49) at an arbitrary r is expected to be in-
dependent of r, unless there is a ‘running’ field, such 
as an electrical scalar potential or dilaton which can 
bring about a nontrivial r-dependence.

In the  neutral case and in the  absence of a  dila-
ton, no radial evolution should indeed occur, and so 
the conductivity could be equally well evaluated either 
at the boundary or the horizon (σ                 = σ                 ).

However, in the charged case one would expect 
the  local conductivity to vary with the  radial vari-
able, whether or not a  non-trivial dilaton field is 
present.

To that end, in Ref. [51] a general relation was pro-
posed

, (54)

with this ratio becoming unity at zero density, as per 
the equation of state (10).

In contrast, at finite density Eq. (54) implies a non-
trivial radial (hence, temperature) dependence of 
the  local conductivity, thereby predicting the  low-T 
behaviour 

(H) 
Kubo,neutral

(Β) 
Kubo,neutral

~ T(2/z)(–d+θ–z–1+3θ/d),
which clearly contradicts Eq. (50).

Conversely, if one chooses to treat Eq. (50) as 
the horizon value σ               , then Eq. (56) implies

σ               ~ T(2/z)(d–θ+z–1–θ/d),

which is again different from the  predictions of 
the scaling analysis.

This adds to the  argument that a  better under-
standing of the applicability of such formulae as Eqs. 
(44) and (54) for n ≠ 0 is definitely called for.

However, in spite of some confusion with their 
terms of use, Eq. (53) can still capture such intrinsic 
properties of the conductivity tensor as, e. g. the rela-
tive scaling of its components with temperature.

Namely, the  scaling dimensions (36)–(38) would 
seemingly imply that the following relation

 (55)

sets in, as the system approaches the neutral regime 
at high temperatures. In fact, such a  relation does 
hold  –  but only for the  partial (particle and hole) 
contributions towards the  total Hall conductivity. 
Should both components happen to have equal mo-
bilities (as, e. g., in the case of a particle-hole sym-
metric spectrum), the overall σxy would only be pro-
portional to the charge imbalance given by en(T = 0), 
thereby resulting in the  different relative scaling 
rule

. (56)

The naive relation (55) could still hold, though, if 
the  spectrum were lacking particle-hole symmetry 
(as, e. g., in the case of topological insulators where 
the Dirac spectrum emerges as a result of the bulk gap 
inversion).

In that regard, Ref. [49] claimed that in the  ex-
tended class of the  3-parameter HV systems and at 
suficiently high temperatures the cuprate-like behav-
iours of both σxx and σxy could be recovered even in 
the spatially isotropic case.

Indeed, by using Eq. (56), one can see that in 
the original, 2-parameter HV system with z ≠ 0 and 
θ ≠ d, this does not happen, as the desired depend-
ences σxx  ~  T–1 and σxy  ~  T–3 would only occur in 
the unphysical dimension ds = 2/3.

(Β) 
Kubo,neutral

(H) 
Kubo,neutral
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However, in the 3-parameter family of the gener-
alized HV systems, such dependences could emerge 
under the choice of parameters [49]

ϕ = 2 – 3z/2, θm = ds – z/2,

and these conditions would only be consistent with 
Eq. (27), provided that

d + 2 – 2z – θ = 0.

The tangibility of such a  scenario remains to be 
discerned, as does the  whole notion of different di-
mensions for the  gravitational and gauge (matter) 
degrees of freedom. In the  known examples of lay-
ered strongly correlated systems, the emergent (both 
gauge and matter) fields always tend to be confined to 
the supporting lower-dimensional subspace. In con-
trast, the physical Coulomb interactions do permeate 
the surrounding 3d space and their dynamics gets af-
fected by the charges outside the graphene plane, thus 
hindering the  possibility of finding their consistent 
holographic description.

Yet another important remark is in order here. Ac-
cording to Eq. (53), a finite longitudinal (Ohm’s) con-
ductivity can arise due to both current relaxation as 
well as (Schwinger’s) pair production. While the latter 
mechanism operates even at zero charge density (un-
like the current, the system’s momentum would then 
be conserved), the former one requires a finite density 
of carriers immersed in a  dissipative medium com-
posed of some neutral modes.

In the  framework of the  ‘membrane paradigm’, 
the  two sources of finite conductivity combine to-
gether in a rather peculiar manner

, (57)

where σmr and σpc stand for the contributions due to 
momentum relaxation and pair creation, respectively.

For comparison, a  direct application of the  con-
ventional Kubo approach yields [69]

σ = σmr + σpc, (58)

where the two terms can be readily identified as those 
produced by the inter- and intra-band transitions, re-
spectively.

Notably, both Eqs. (57) and (58) violate the stan-
dard Matthiessen’s rule, according to which it is 
the  inverse of the  partial conductivities (due to dif-
ferent mechanisms of scattering for the same type of 
carriers) that tend to add up (‘connection in series’). 
In contrast, Eq. (58) presents the  combination rule 

for those situations where there are two different con-
tributions to the overall conductivity in response to 
the same bias (‘parallel connection’), the higher one 
short-circuiting the rest of the system.

Among the consequences of this unconventional 
(‘anti-Matthiessen’) combination rule for the  partial 
scattering rates is a potential dominance of σpc at high 
temperatures, resulting in the effective independence 
of Eqs. (57) and (58) from the momentum relaxation 
rate in this regime. In that regard, it is worth mention-
ing the forceful attempt of Ref. [70] to obtain the con-
comitant cuprate-like behaviours of the  conductiv-
ity and the Hall angle by speculating that the former 
behaves as σ ≈ σpc ~ T–1, whereas the  latter acquires 
the  much-desired inverse quadratic dependence, 
θH ~ σmr ~ T–2 due to the Umklapp processes.

However, this argument appears to ignore the well-
known subtleties of the  Umklapp-related phenom-
ena. In particular, no ~ T2 momentum-relaxation rate 
should be expected in the case of a simply-connected 
2d convex Fermi surface or a non-Galilean invariant 
system with an isotropic non-parabolic dispersion 
(same is also true for an arbitrarily anisotropic para-
bolic one) [71–73].

Thus, contrary to the naive expectations, the ho-
lographic calculations resulting in Eqs. (57) and (58) 
may need quite a bit of adjusting before their predic-
tions could withstand a  comparison with the actual 
experimental data on the cuprates.

Furthermore, the  two partial conductivities in 
Eqs. (57) and (58) were found to behave as

σmr,1(ω) ~ ω|3+(d–2–θ)/z|–1 (59)

[74] or

σmr,2(ω) ~ ω|1+(θ–2–d)/z|–1 (60)

[69], whereas

σpc(ω) ~ ω(|1–ζ|–1)/z (61)

[69, 74], where a new (‘conduction’) exponent ζ was 
introduced to describe the scalar potential A0 ~ rζ–z. 
Conceptually, it can be related to the aforementioned 
ϕ-factor.

Given that the exponents appearing in Eqs. (59)–
(61) differ from those discussed earlier in this Sec-
tion, a better understanding of their physical nature 
as well as the  origin of combination rules (57) and 
(58) would once again be warranted.

Interestingly, though, the  momentum relaxation 
exponent (60) found in Ref. [69] agrees with the re-
sults of still another recent work of Refs. [75–77] 
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where an important effort was made to include elastic 
scattering, alongside the inelastic one.

In fact, the  analysis of Refs. [75–77] represents 
a  ‘holography-augmented’ transport theory, rather 
than a  systematic all-holographic calculation. Con-
ceivably, though, such a  hybrid approach might be 
better equipped for capturing the underlying physics 
of the relevant transport phenomena.

Specifically, these works employed the  so-called 
memory function formalism [78–80] which does not 
explicitly rely on the existence of well-defined quasi-
particles and presents, e. g., the electrical conductivity 
in the form 

,         (62)

where χJP,PP(T) are the current–momentum and mo-
mentum–momentum susceptibilities.

Formula (62) assumes that momentum is the only 
(nearly) conserved physical quantity and relates 
the conductivity to the spectral density of the opera-
tor that breaks momentum conservation. It is expect-
ed to work best in the hydrodynamic regime where 
the  rate of momentum relaxation due to a breaking 
of translational invariance by elastic impurity or lat-
tice-assisted inelastic Umklapp scattering is smaller 
than the inelastic rate which controls a formation of 
the hydrodynamic state itself. For instance, in the case 
of μ >> T the rate of the Umklapp scattering is of order 
~ T2/μ, whereas the latter one is given by the universal 
quantum-critical rate (32).

In general, the  onset of hydrodynamics is a  dis-
tinct property of strong correlations which would 
be routinely absent in the Fermi liquid regime. Such 
a regime would also be absent in 1d, thanks to the pe-
culiar 1d kinematics facilitating the emergence of in-
finitely many (almost) conserved currents.

In the  absence of any (nearly) conserved quanti-
ties Eq. (62) ceases to be applicable. Although the cor-
responding ‘incoherent’ metals do not allow for any 
simple description, they have been eloquently argued 
[81–83] to conform to the ubiquitous σ ~ 1/T depend-
ence stemming from the universal scattering rate (32).

In many cases, though, strong interactions often go 
hand-in-glove with (and enhance the effects of) strong 
disorder. The combined effects of the two can hardly be 
accounted for by means of the perturbative Altshuler-
Aronov theory and are likely to require some intrinsi-
cally non-perturbative approaches, such as the Efros-
Shklovskii one, thus allowing for other, essentially 
non-linear, T-dependences, σ ~ exp(–#/Tα).

It is also worth noting that, unlike Eqs. (57) and 
(58), the  applications of Eq. (62) would have a  good 

chance to be in compliance with the Matthiessen’s rule, 
as different scattering mechanisms tend to correspond 
to separate contributions to the integral kernel D(ω, k), 
thereby producing additive terms in the expression for 
the inverse conductivity.

The main inference from Eq. (62) is a  transfer of 
the spectral weight from the coherent Drude peak to 
the incoherent high-frequency tail. It is worth noting, 
though, that in the previous applications of Eq.  (62) 
a  possible quasiparticle renormalization was not, 
de facto, considered, as the behaviour of χJP,PP was be-
lieved to be non-singular and, at most, only weakly 
T-dependent (such an assumption notwithstanding, 
e. g., at the onset of the Mott transition one expects 
χJP = 0).

As mentioned above, the behaviour found in Refs. 
[75–77]

σmemory ~ T (θ–2–d)/z (63)

coincides with that reported in Ref. [69]. However, 
in Refs. [75–77] it was shown to emerge only in 
the strong coupling regime, whereas the lowest (sec-
ond) order perturbative result was found to be non-
universal σmemory  ~  T(z–d–δ)/z, δ being the  anomalous 
dimension of the  operator that breaks momentum 
conservation.

Taking into account the HV scaling relations (16) 
one observes that in the neutral case Eq. (63) appears 
to be inversely proportional to entropy (equivalently, 
speci_cheat or viscosity), as conjectured earlier in 
Ref. [52]. However, the dependence σ ~ 1/Sent ~ T(θ–d)/z 
advocated in [52] can only occur in the limit z → ∞. 
Otherwise, Eq. (63) features an additional factor that, 
incidentally, behaves as the inverse square of a T-de-
pendent ‘graviton mass’ m ~ T1/z.

In a  series of works [84–89], it was indeed pro-
posed to incorporate the  effects of static disorder by 
introducing a graviton mass m which is weakly (if at 
all) T-dependent. Although under such an assumption 
the desired dependence σ ~ 1/Sent does indeed set in, 
it remains to be seen whether such a scenario can be 
justified beyond the ad hoc level.

As yet another effort towards marrying the  for-
mal holographic manipulations with the  more tradi-
tional transport theory, it was also proposed to mimic 
the momentum-relaxing Umklapp processes brought 
about by the presence of a regular crystal lattice with 
expressly anisotropic geometries and periodic scalar 
and/or dilaton potentials.

To that end, in the previously quoted Refs. [10–13] 
the crystal lattice was modelled by a periodic electric 
potential, resulting in  in 2d and 3d, 
respectively.
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Also, noteworthy is the  proposal [90] to use 
the helical Bianchi-VII0 metric with a pitch in the x-
direction

gtt = – grr ~ – 1/r2, gxx ~ r2/3,

gyy ~ 1/r4/3, gzz ~ 1/r2/3 (64)

as a holographic description of the anisotropic 3d pe-
riodic structure which gives rise to the interaction-in-
duced Mott-type state with the ‘bad-metallic’ conduc-
tivity σxx ~ T4/3 in the direction of the pitch, alongside 
a gapless behaviour of the entropy, Sent ~ T2/3.

Although the Bianchi geometry (64) does have its 
intellectual appeal, it should be noted that the above 
choice is not unique. As follows from Eq. (51), 
the same behaviour of both σxx and entanglement en-
tropy can be found for an entire family of the uniaxi-
ally anisotropic 3d metrics

gtt ~ –1/r2α, grr ~ 1/r2β, gii ~ 1/r2γi (65)

which satisfy the conditions 2γx/(1 + α – β) = –2/3, 
Σi  γi  =  2/3. For instance, by choosing α  =  β  =  1; 
γx = – γy = – γz = –2/3 one finds that fully spatially 
anisotropic geometries, as in (64), may not be neces-
sary for constructing a holographic dual of the  ‘bad 
metal’, after all.

Continuing with the list of the previously obtained 
holographic results it might be worth mentioning 
a  few more examples whose physical interpretation 
(as well as mutual consistency) is yet to be ascertained.

For one, there has been a variety of predictions for 
the dimension of electrical conductivity. In the neu-
tral Lifshitz case (θ  =  0), Refs. [44–48] found Δσ  = 
(d+2–2z)/z, while Ref. [91] reported Δσ = (3–d–z)/z, 
and Ref. [92] arrived at the exponent Δσ = (d+2z–4)/z.

None of these values appears to be consistent with 
the above scaling predictions and the universal quan-
tum-critical scattering rate (32).

Going beyond the  Lifshitz case, Ref. [93] found 
Δσ = 3 for d = 3 and Δσ = (2z–3)/z for θ = d–1, whereas 
Ref. [94] reported Δσ = (d–2)/z, but only for z = d–2, 
Δσ = 1/z for z = (d–4)/3, and Δσ = (d–θ)/z, also in con-
flict with the above scaling results.

Also, for d  =  2 Ref. [95] delivered Δσ  =  2, while 
Ref. [96] obtained Δσ = 7/2. Moreover, Ref. [97] pre-
sented an even greater variety of values, Δσ = 1, 2, 3, d, 
d–2, d–4 for z = 1 and (2z+d–2)/z for z ≠ 1, as well as 
a whole discrete series (1 + 3p)/(3 + p), whereas other 
works featured the  entire plethoras of non-universal 
exponents as functions of one or even two continuous 
parameters appearing in the  holographic Lagrangian 
[98, 99].

On the other hand, Refs. [100–102] utilized the met-
rics (4) with β = 2–α obtaining the results Δσ = –2γ/
(2α–1) and cot θH ~ T2γ/(2α–1), in agreement with (49).

Still other available methods of computing con-
ductivity include extracting it from the hydrodynam-
ic expansion or computing a drag force for massive 
charge carriers. Although some of those results may 
seem more plausible than others, they are still await-
ing for their physical interpretation and a systematic 
comparison with the predictions made by the alterna-
tive techniques.

In that regard, the general universal relations, such 
as Eqs. (28) or (33), provide an important consistency 
test, while reinforcing the  notion that the  dynamic 
properties of quantum-critical systems are closely re-
lated to their thermodynamics. Technically, such a re-
lationship implies that, apart from the relaxation rate 
(32), the kinetic coefficients can be found in terms of 
the thermodynamic ones.

Yet another important test would be provided 
by the  sum rules for the  optical conductivity and 
other kinetic coefficients, akin to those extensively 
employed in Refs. [103, 104]. Obviously, no mono-
tonic low-frequency asymptotic obtained by solving 
the  differential equation (46) in the  Kubo formula 
approach can be up for this test. However, the  fre-
quency-dependent counterparts of the  purely alge-
braic Eqs. (53) could indeed be used to that effect, 
once their closed expressions are obtained in a wide 
range of frequencies.

5. Mother of all non-Fermi liquids

One concrete context for a comparative discussion of 
different holographic models is provided in the theo-
ries of fermions coupled to gapless over-damped bo-
sonic modes. This ‘mother of all NFLs’ has long been 
at the forefront of theoretical research, since the sin-
gular interactions mediated by soft gauge field-like 
bosons are often associated with incipient ground 
state instabilities and concomitant NFL types of be-
haviour.

Such effective long-range and strongly retarded 
interactions may occur even in microscopic systems 
with purely short-ranged couplings. In the close prox-
imity to a quantum-critical point, the role of the cor-
responding modes is then played by (nearly) gapless 
excitations of an emergent order parameter.

Important examples include such problems as 
ordinary electromagnetic fluctuations in metals and 
plasmas, spin and charge ordering transitions in itin-
erant (anti)ferromagnets, compressible Quantum 
Hall Effect, Pomeranchuk instabilities resulting in 
rotationally anisotropic ‘quantum nematic’ states, etc.
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Despite all the differences in their physical nature, 
these systems conform to the general problem of a fi-
nite density fermion gas coupled to an overdamped 
bosonic mode whose own dynamics is governed by 
the (transverse) gauge field-like propagator:

. (66)

In the context of electrodynamics of conducting me-
dia, the first and second terms account for the effects 
of the  Landau damping and diamagnetism, respec-
tively.

Over the past two decades this problem has been 
repeatedly attacked with a  variety of techniques. At 
the  early stage, it was believed that the  functional 
form of the one-loop fermion self-energy

 (67)

survives in the  higher orders of the  perturbation 
theory, akin to the situation in the Eliashberg theory 
of electron–phonon interactions [105, 106]. How-
ever, the  more recent analyses demonstrated an 
inapplicability of the naive weak coupling and 1/N-
expansions [107–109], thus calling the earlier results 
into question.

There have also been attempts to study this the-
ory without introducing the  Landau damping from 
the outset [110, 111], and such analysis yields a self-
energy Σ ~ ω1–ϵ/4 in d = 3 – ϵ dimensions and for ρ = 2, 
ξ = 1 that is markedly different from the counterpart 
of (67), Σ ~ ω1–ϵ/3. In still other approaches, the prob-
lem was attacked by expanding in zb  –  2 [112] or 
d = 5/2 – ϵ [113].

Despite somewhat conflicting results, Eqs. (66) 
and (67) would often be used for evaluating the boson 
and fermion dynamical exponents

. (68)

Conceivably, a  hypothetical holographic dual (if 
any) of the  boundary theory with the  interaction 
(66) might involve such bulk degrees of freedom as 
gauge potential, metric and scalar fields and, there-
fore, it could be envisioned amongst the solutions of 
the EMD Lagrangian (9).

Along these lines, in Ref. [114] a comparison was 
made between the  two-point correlation function 
computed holographically in a yet-to-be-specified HV 
geometry and those obtained directly in the bound-
ary theory with the use of the eikonal technique.

The agreement was found, provided that 
the θ-parameter of the HV metric (6) was chosen as 

 
 (69)

thereby satisfying the relation zf = 1+ θ/d and, inci-
dentally, turning the  first of the  conditions (8) into 
an exact equality. In particular, for d = 2, ρ = 2, ξ = 1 
one obtains zf = 3/2 and θ = 1, the values that have 
also been independently singled out on the basis of 
analysing the entanglement entropy [41, 42].

Table. Comparison of the exponents governing a power-
law decay of the conductivity computed holographically.

Δσ Kubocharged Kuboneutral
Memory 
function

Model 
I

Model 
II

Model 
III

Model 
IV

Model 
V

In the Table, we compare the exponents governing 
a power-law decay of the conductivity computed ho-
lographically with the use of Eqs. (50), (51), and (62). 
These values pertain to the aforementioned models I–
IV and are complemented by those for the new Mod-
el V which is characterized by the exponents zf and θ 
given by Eqs. (68) and (69), respectively.

The first two columns contain the exponents Δσ
(∞) 

governing the ω-dependence for ω >>  T and given by 
Eqs. (50) and (51), whereas the  third column con-
tains the values of Δσ

(0) pertinent to the T-dependence 
for ω >> T and given by Eq. (62) (a potentially strong 
ω-dependence of the  functions χJP,PP complicates 
the analysis of σ(ω) in the framework of the memory 
function method).

A few comments are in order.
Firstly, despite being spurious as far as its physical 

implications are concerned (see below), the  much-
desired exponent –2/3 is quite robust and can be ob-
tained in any of the models I–IV for both d = 2 and 
d = 3, as long as ξ = 1. Moreover, for ξ = 1 all the results 
for the models I and III as well as those for the models 
II and IV are identical.
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Secondly, the Model V with its conjectured boundary 
dual represented by the gauge-fermion model can also 
be amenable to the application of the stan dard Drude 
theory. The latter (nominally) assumes the existence of 
a quasiparticle description and yields the conductivity

, (70)

where the (possibly strong) quasiparticle renormaliza-
tion is accounted for via the Green function’s residue, 
Z = 1/(1 – ∂Σ/∂ω).

Potentially, Eq. (70) can take rather different forms 
at small and large ω, as compared to T, depending on 
whether or not the  transport scattering rate Гtr be-
haves differently from that of quasiparticle decay.

Estimating the latter as Σ(ω) ~ ω1/zf one then finds 
the former (as well as the entire T-dependent DC con-
ductivity) to be governed by the modified exponent

σ (0)
Drude ~ 1/Гtr ~ T–(1/zf+2/zb) . (71)

In contrast, at high ω one obtains

. (72)

Thus, the  DC and AC Drude conductivities exhibit 
the same exponent only in the limit zb → ∞ which corre-
sponds to a particular case of the generic short-ranged 
(and, therefore, only weakly momentum-dependent) 
scattering mechanism.

By contrast, for any finite zb there will be a dispar-
ity between the transport and quasiparticle decay rates 
and, as a result, different values of the exponents con-
trolling the ω and T dependences. This fairly mundane 
observation should be contrasted with such exotic pro-
posals as a ‘wrong’ sign of the expression under the ab-
solute value in Eqs. (59)–(61) or a parameter-depend-
ent dominance of one term in Eq. (58) over the other 
which were put forward in Ref. [69].

By applying Eq. (70) to the Model V one observes 
that the low-ω Drude conductivity (specifically, its ex-
ponent Δσ

(0)) agrees with that of the memory function 
approach for, at least, one of the models I–IV, while in 
the  high-ω regime (i.  e., for Δσ

(∞)) this is generally not 
the case.

Specifically, for d = 2, ρ = 2, ξ = 1 the high-ω Drude 
formula yields Δσ

(∞) = 0, while in 3d one gets Δσ
(∞) = –1/3. 

By contrast, in the DC limit one gets Δσ
(0) = – 4/3 and 

–5/3 (up to a power of logarithm) in 2d and 3d, respec-
tively.

In the  case of ρ  =  2, ξ  =  0, the  counterparts of 
the above values read Δσ

(∞) = 1/2 (2d) and 0 in (3d), 

while in the DC limit one gets Δσ
(0) = –3/2 and –2 in 2d 

and 3d, correspondingly.
The latter estimate should not be compared directly 

with the prediction Δσ
(∞) = –1/3 made in Refs. [115, 116] 

for the  scenario of an incipient 2d spin density wave 
instability with the large momentum. The cuprate-like 
shape of the Fermi surface and the dominant scattering 
involving its opposite regions modify the above results 
obtained under the  assumption of a  spherical Fermi 
surface by a missing factor of ω2/zb due to the scattering 
between the conjugate pairs of hot spots and an addi-
tional factor of ω1/2 due to a finite span of the region 
around each hot spot. Together, the  two effects con-
spire to result in a somewhat accidental cancellation, 
thereby producing Δσ

(∞) = 0.
As to the quoted exponent –1/3, it was obtained in 

[115, 116] by going well beyond the Drude approxima-
tion and focusing on certain ‘energy transfer’ processes 
which involve pairs of soft bosons with small total mo-
menta.

The story does not seem to end there, though. 
The  calculation performed in the  framework of 
the ‘Ising nematic’ model focusing on the (quasi)stat-
ic fluctuations of the  nematic order parameter pro-
duced the low-T behaviour [75–77] 

σIN ~ (T log T)1/2. (73)

Under a  closer inspection, Eq. (73) turns out to be 
indicative of the IR divergence of the momentum in-
tegral in Eq. (62) from which it is rescued by intro-
ducing a cut-off at energies of the order of the mass of 
the bosonic mode m ~ (T log T)1/2.

However, should such a mass happen to be pro-
hibited on the grounds of, e. g., unbroken gauge in-
variance, the  problem in question would turn out 
to be intrinsically strongly-coupled and possibly re-
sulting in quite different, yet to be determined, con-
ductivity behaviour (in the case of the Ising nematic, 
such a possibility was claimed to be conveniently pre-
empted by the onset of a super-conducting instability 
[117]).

Besides, albeit being seemingly innocuous to 
the first order [75–77], the T-dependent corrections to 
the susceptibilities χJP,PP may get promoted to the ex-
ponent in the higher orders, thus altering the overall 
power counting.

In that regard, a particularly interesting would be 
the actual gauge field problem where, unlike the lon-
gitudinal, the transverse gauge boson does not develop 
any (thermal) mass, except in the case of a symmetry-
breaking phase transition.

Finally, as a  general caveat, the  naive scaling pre-
dictions for the exponents controlling the temperature 
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dependence of conductivity may not be at all observ-
able. This can happen when the prefactor in front of 
the  corresponding term vanishes, as per the  analysis 
based on the semiclassical kinetic equation which was 
also argued to remain applicable even beyond the Fer-
mi liquid regime [71–73].

6. Real-life non-Fermi liquids

The list of documented NFLs is extensive and in-
cludes ferromagnetic metals (e. g., MnSi, ZrZn2) and 
superconductors (UGe2, URhGe, UCoGe), heavy fer-
mions (e.  g., YbRh2Si2, CeCoIn5 or URu2Si2), uncon-
ventional superconductors such as cuprates and iron 
pnictides, electronic nematics (e. g., Sr3Ru2O7), insulat-
ing magnets (e. g., CoNb2O6 and TlCuCl3), quasi-one 
dimensional Mott insulators (e.  g., (TMTSF)2PF6 or 
(TMTSF)2ClO4), etc.

Given that in most cases the dynamical exponent 
z > 1, one might naively expect all the 3d systems to 
show the classical mean-field scaling behaviour, since 
the  effective dimension of spatial fluctuations, which 
equals d + z, appears to exceed the upper critical di-
mension duc = 4.

Moreover, the FM systems with a conserved order 
parameter and zb = ρ + ξ = 3 would be anticipated to 
follow the classical scenario for any d > 1, whereas for 
the AFM ones (where the order parameter is not con-
served and zb = ρ + ξ = 2) it would then happen for all 
d > 2.

However, this argument can be invalidated by 
dangerously irrelevant variables presenting a  poten-
tial source of hyperscaling violation and resulting in 
the breakdown of the corresponding relation between 
the specific heat (α) and correlation length (v) expo-
nents, dv = 2 – α [118].

For one, the 3d helical ferromagnet MnSi dem-
onstrates NFL behaviour for σ ~ T–3/2 (which reverts 
to ~  T2 in a  field of 3  T). The  itinerant ferromag-
net ZrZn2 shows somewhat similar properties. Such 
prototypical NFL materials have long been viewed 
as potential candidates to the application of the 3d 
gauge-fermion theory discussed in the previous Sec-
tion, although the thus-obtained conductivity would 
behave as ~T–5/3, in disagreement with the above de-
pendences.

In turn, the  3d AFM heavy-fermion compound 
YbRh2Si2 exhibits a quantum-critical point at a finite 
field Hc, featuring χs ~ T1/4; C ~ T3/4; σ ~ T–3/4, the behav-
iour that is suggestive of the critical exponents z = 4, 
α = 1/4, and v = 1/3.

Its doped cousin YbRh2(Si1–xGex)2 shows a  pow-
er-law behaviour of the  low-ω spin susceptibility 
Reχs ~ T–0.6, Imχs ~ ω/T1.6 for x ≈ 0.05 [119].

Another example of the  3d AFM materials, 
UCu5–xPdx, manifests C  ~  T2, σ  ~  T–1/3 and χs  ~  Tγ, 
where γ ranges between 0 for x = 1 (i. e., χs ~ ln T) and 
χs ~ T–1/3 for x = 1.5 [118].

The list of the  3d AFM also includes CeIn3 with 
σ  ~  T–3/2 (under near-critical pressure), CePd2Si2 with 
σ ~ T–5/4, CeRnSn with anisotropic resistivity: σab ~ T–3/2, 
σc  ~  1/T, and magnetic susceptibility: χs,ab  ~  T–1/3, 
χs,c ~ T–1.5.

Another (this time, quasi-2d) AFM material, 
CeCu6–xAux, shows C ~ T7/8, δs ~ T–7/8; χs ~ T1/8 for x ≈ 0.1 
[120], data hinting at the  exponents z  =  8/3, α  =  1/8, 
v = 3/7.

It was also argued in Ref. [118] that such data 
could be explained in terms of the  anisotropic dy-
namical susceptibility χs(ω,  k)  =  (k2

┴  +  k||
4  +  |ω|γ)–1 

where γ = 4/5, yielding ρ ~ T, χs ~ T1/2.
As regards the  quasi-2d AFM materials, the  Ka-

gome AFM ZnCu3(OH)6Cl2 (a.k.a. Herbertsmithite) 
shows a power-law behaviour of the bulk susceptibility, 
χs ~ T–2/3, and the spin relaxation rate 1/T1 ~ T0.7, although 
the issue of its possibly non-analytical ω-dependence at 
small ω has not been completely settled yet [121].

Also, the in-plane optical conductivity of this ma-
terial σ ~ ω7/5 was argued to be consistent with the pic-
ture of a spin gapless (since C ~ T) but charge gapped 
2d Dirac spin liquid state [122].

The gauge theory of the U(1) spin-liquid states is 
also expected to reproduce such observed metal-like 
properties as C/T, χs, κ/T → const (despite 1/T1 ~ T2 
which might indicate a  soft nodal gap) in the  or-
ganic compound EtMe3Sb[Pb(dmit)2]2 which shows 
the  conductivity exponent Δσ varying between 3/4 
to 3/2 [123]. A  similar spin-liquid state (although, 
possibly, with a  small spinon gap) characterized by 
the  conductivity exponent Δσ ranging between 0.8 
and 1.5 occurs in κ-BEET-Cu2CN3 [124]).

While the  complete theory is still being devel-
oped and perfected, its viable variant was proposed 
in the  framework of the  phenomenological analysis 
of Ref. [125] where the NFL self-energy was assumed 
to be independent of momentum, Σ(ω)  ~  ω1–α, and 
subject to the self-consistent equation

,            (74)

where G(ω,  q)  =  (iω/Z  –  vq)–1 is the  fermion Green 
function and χE(ω, q) = ∫ dϵ ddpΛ4GGDD is the effective 
propagator of soft bosonic pair-exchange processes, 
each of which is described by the  antiferromagnetic 
dynamical susceptibility χ(ω, q). The latter conforms to 
the general Eq. (66) where ξ = 0, ρ = 2, and ω is multiplied 
by the  factor Λ2 in order to achieve self-consistency. 
In turn, the  interaction vertices are decorated with 
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the renormalization factor, Λ ~ 1/Z, thereby enforc-
ing the corresponding Ward identity.

The exponents obtained by solving Eq. (74) turn 
out to be completely universal and solely determined 
by the spatial dimension

.   (75)

The resulting observables

C ~ T1–α, σ ~ ωα–1, χs ~ Tα (76)

turn out to describe quite well the aforementioned data 
on YbRh2Si2 and CeCu6–xAux for d = 3 and 2, respec-
tively.

Despite being ostensibly universal, the above solu-
tion can only emerge, provided that the  initial value 
of Z is suficiently small [125]. This way, one can ex-
plain the  fact that this solution does not apparently 
describe all the antiferromagnetic heavy fermion ma-
terials. Nonetheless, it would be a real challenge (and 
an impressive achievement in the case of success) for 
the holographic approach to reproduce more than one 
of the above exponents (for the same compound).

7. Summary

The holographic approach aspires to provide a  po-
tential framework for treating those strongly coupled 
systems that do not fit into the conventional quasipar-
ticle picture but could be still amenable to a descrip-
tion in terms of certain one- and two-particle Green 
functions. In fact, had this implicit assumption failed 
as well, it would make any comparison with the experi-
mental data (deduced by means of the available one- 
and two-particle probes) rather problematic.

To that end, a comparison with the results obtained 
by other, more traditional, techniques might be helpful 
for setting up a proper holographic model. Besides, in 
order to become a viable practical tool, the holographic 
approach would have to be able to reproduce the be-
haviour of not just one, but a whole variety of observa-
bles, such as specific heat, compressibility, magnetic 
susceptibility, electrical, thermal, and spin conductivi-
ties, etc. A host of such data on the documented NFL 
materials is available and, for the  most part, is still 
awaiting its interpretation.

In the present communication, a number of the ex-
isting holographic predictions for thermodynamic and 
kinetic coefficients in the theories dual to the HV ge-
ometries were analysed in the framework of the scal-
ing theory and with an eye on the general universal 
relations. In the course of such analysis, many striking 

contradictions and mutual inconsistencies between 
the predictions for, e. g., the conductivity obtained by 
virtue of the Kubo vs ‘membrane paradigm’ techniques 
(by the same and/or different authors), were exposed 
and the related subtleties emphasized.

To summarize, providing a solid physical interpre-
tation of the holographic results should be instrumen-
tal for ascertaining their true status. In the absence of 
such physical input, the  only (obviously, unwanted) 
alternative for the holographic predictions would be to 
get stuck in the situation where any formal result would 
seem to be (almost) as good as any other one. Only af-
ter having proven to be more than tenuously related 
to the actual materials, the holographic approach will 
become a genuine breakthrough in the field of strongly 
correlated systems.
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