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The massive integration of wind power into the power system in-
creasingly calls for better short-term wind speed forecasting which 
helps transmission system operators to balance the power systems 
with less reserve capacities. The  time series analysis methods are 
often used to analyze the  wind speed variability. The  time series 
are defined as a sequence of observations ordered in time. Statisti-
cal methods described in this paper are based on the prediction of 
future wind speed data depending on the historical observations. 
This allows us to find a sufficiently good model for the wind speed 
prediction. The paper addresses a short-term wind speed forecast-
ing ARIMA (Autoregressive Integrated Moving Average) model. 
This method was applied for a number of different prediction prob-
lems, including the short term wind speed forecasts. It is seen as 
an early time series methodology with well-known limitations in 
wind speed forecasting, mainly because of insufficient accuracies of 
the hourly forecasts for the second half of the day-ahead forecasting 
period. The authors attempt to find the maximum effectiveness of 
the model aiming to find: (1) how the identification of the optimal 
model structure improves the forecasting results and (2) what ac-
curacy increase can be gained by reidentification of the structure 
for a new wind weather season. Both historical and synthetic wind 
speed data representing the sample locality in the Baltic region were 
used to run the model. The model structure is defined by rows p, d, 
q and length of retrospective data period. The structure parameters 
p (Autoregressive component, AR) and q (Moving Average compo-
nent, MA) were determined by the Partial Auto-Correlation Func-
tion (PACF) and Auto-Correlation Function (ACF), respectively. 
The model’s forecasting accuracy is based on the root mean square 
error (RMSE), mean absolute percentage error (MAPE) and mean 
absolute error (MAE). The results allowed to establish the optimal 
model structure and the  length of the  input/retrospective period. 
The  quantitative study revealed that identification of the  optimal 
model structure gives significant accuracy improvement against 
casual structures for 6–8 h forecast lead time, but a season-specif-
ic structure is not appropriate for the entire year period. Based on 
the conducted calculations, we propose to couple the ARIMA mod-
el with any more effective method into a hybrid model.

Key words: ARIMA, power system, wind speed, short-term fore-
casting



46 Ernesta Grigonyte, Eglė Butkevičiūtė

INTRODUCTION

Recently, wind power has been growing at an un-
precedented rate globally. The increasing impor-
tance of wind power integration into the power 
system encourages researchers to develop more 
reliable techniques to forecast wind power. To 
continue the growth in the following decade [1], 
short-term prediction of wind speed and power 
generation is becoming increasingly important. 
However, the  reason why generation of wind 
power is extremely intermittent is that weather 
conditions and wind speed are highly volatile and 
affected by a number of factors. As wind energy 
makes a significant penetration into the electrici-
ty grid, the need for accurate predictions of wind 
power generation becomes critical [2, 3].

Currently, many different methods are used 
to forecast the wind speed: Autoregressive Mov-
ing Average (ARMA), Artificial Neural Networks 
(ANN), Genetic Algorithm (GA), Wavelet De-
composition (WD), Empirical Mode Decompo-
sition (EMD), Multi-Layer Perceptron (MLP), 
Extreme Learning Machines (ELM), FUZZY, etc. 
Studies have shown that hybrid models consist-
ing of a few different methods reach better results 
than any single model. In recent research, model 
comparison through the mean absolute percent-
age error (MAPE) is used for measurement pur-
poses. For example, with a  hybrid EMD–ELM 
model the  wind speed forecast average MAPE 
error is 2.21%, while with a single ELM model it 
is 8.6% [4–6].

To look for adaptability of an ARIMA model, 
we need to check if stationary and invertibility 
conditions are complied with. All ARIMA (0, d, 
q) models are stationary, but in order to recognize 
if the model is chosen correctly, we must look if 
the  time series satisfy the  other condition  –  in-
vertibility. Because ARIMA (p, d, 0) models are 
invertible and based on the  values of the  para-
meters, they may not be stationary. As a  result, 
the  model has various representations. That is 
why it is advisable to look for the  simplest rep-
resentations to estimate wind speed.

In 1978, Granger and Andersen proposed 
a generalized definition of inversion and applied 
it to linear, non-linear, and bilinear models [7]. 
It can be seen that some non-linear models are 
not invertible, but this condition can be achieved 

with another model’s help by combining them to-
gether. To define conditions for the general Mov-
ing Average (MA) process, of order q, input data 
should be invertible (accordingly, process bor-
derline should be non-invertible). The conditions 
have to be termed as acceptability conditions. 
The  dependency can be found on the  magni-
tude of the final moving average parameter, θq. If 
|θq| < 1, the process is not acceptable. The process 
should reach the conditions |θq| = 1 for any par-
ticular q meaning and is expected to run smooth-
ly. If |θq| < 1, the conditions need to be established. 
Simultaneously, the stationarity of autoregressive 
processes is examined. In 2008, Ojo compared 
subset autoregressive integrated moving average 
models with full autoregressive integrated mov-
ing average models [8]. The author estimated and 
investigated the parameters of these models, and 
the statistical properties of the derived estimates 
were set out. He proposed an effective algorithm 
that can eliminate redundant parameters from 
the full order ARIMA models.

In this paper, a trial is undertaken to find an 
appropriate autoregressive integrated moving 
average (ARIMA) model structure that would 
be the most efficient and, by comparing forecast 
and real time series cases, gaining the lowest er-
rors. Research was made to forecast daily wind 
speed for the  first seven days of February 2012 
in Latvia by using this model. It is selected to 
check the model’s forecasting performance based 
on MAPE, RMSE (root mean square error), and 
MAE (mean absolute error).

To verify if gained results are correct to use, 
we compared the  results of the  forecast wind 
speed for different yearly seasons: winter, spring, 
summer and autumn. Checking was made by 
using the gained ARIMA structure (p, d, q) and 
the same training period for all seasons. Our aim 
is to research if forecast values combined with 
real values make sufficiently precise meanings.

METHODOLOGY AND DATA SOURCE

Time series analysis with ARIMA models
Most of the  modelling methods, including 
Box-Jenkins approach [9], are applicable on sta-
tionary time series. ARIMA models are a type of 
time series based on statistical models that are 
widely used in short-term predictions. A typical 
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ARIMA model, denoted as ARIMA (p, d, q), can 
be expressed in the following form:
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This equation can be written as:
yt = α + ϕiYt–1 + ... + ϕpYt–p +
+ θiεt–1 + … + θqεt–q + εt, (2)

where α is the  constant term (i.  e. the  mean of 
the  underlying stochastic process), ϕi is the  i-th 
autoregressive parameter, ϕj is the j-th moving av-
erage parameter, et is the error term at time t, and 
yt is the value of the wind speed observed at the 
time t [10]. The autoregressive parameters repre-
sent the lags of differenced series, and the moving 
average terms show the lags of the prediction errors. 
It is possible that the  time series data is non-sta-
tionary (or seasonal), and in this case it needs to 
be differenced to become stationary. The result is 
an “integrated” version of a stationary series, and 
the model becomes an ARIMA model, denoted by 
ARIMA (p, d, q), where p, d, and q are the numbers 
of autoregressive terms, non-seasonal differences, 
and lagged prediction errors, respectively. Clearly, 
if d is zero, the ARIMA model becomes an ARMA 
(p, q) model. If both d and q are zero, then the ARI-
MA model becomes an AR (p) model. If both d 
and p are zero, then the ARIMA model becomes 
a MA (q) model.

In this study, we employ the  general proce-
dure of ARIMA modelling for the prediction of 
wind speed. Based on the data obtained, a suita-
ble model structure and model parameters will be 
obtained. The procedure is described as follows. 
Firstly, the  stationarity of the  time series data is 
tested by checking the  run order plot and Au-
to-Correlation Function (ACF) plots of the data 
points. The  trends in the  time series data and 
constant variance assumption can be analysed 
using Auto-Correlation Function (ACF) and Par-
tial Auto-Correlation Function (PACF) plots [11, 
12]. Based on certain characteristics of the  run 
order and ACF graphs, successive differencing 
of the data series might be used until the data is 
concluded to be stationary. Secondly, the autore-
gressive and moving average terms can also be 
determined using the ACF and PACF plots [10, 
13]. These graphs are used to make decisions on 
the  autoregressive and moving average terms in 
the model. Thirdly, based on the identified mod-

el structure (p, d, q), the identifying model para-
meters need to be obtained.

Model precision analysis
The root mean square error (RMSE), mean abso-
lute percentage error (MAPE) and mean absolute 
error (MAE) are adopted to evaluate the  pre-
diction accuracy of the  approaches [8]. MAE is 
a common measure of the forecast error in time 
series analysis, which measures the average mag-
nitude of the errors in a set of forecasts:
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where n is the number of observations in the total 
evaluation period, yt is the value of observation at 
time t, and ft is the forecast value.

Equation (3) shows that MAE is the  average 
over the  absolute values of deviations between 
the  forecast and the  corresponding observation 
[8]. MAPE is calculated as the  average absolute 
percentage error: 
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As seen in equation (4), the main purpose of 
MAPE is to show if the data is stable (variation is 
small). That is why MAPE is important in wind 
power prediction.
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Equation (5) indicates that RMSE is a  quad-
ratic scoring rule, which measures the  average 
magnitude of the  error [8]. The  difference be-
tween forecasts and corresponding observed val-
ues are squared, summed, and then averaged over 
the  sample number. Finally, the  square root of 
the average is taken. Since the errors are squared 
before they are averaged, RMSE gives relatively 
high weights to large errors. This means RMSE is 
most useful when large errors are undesirable.

Wind data
Meteorological data was received from Riga site 
(central Latvia) [14]. They can be denominated as 
all-Latvian averages. All variables are presented 
as hourly data. The  investigation period covers 
the period of 2012.
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The research consists of two parts: in the first 
one we need to reveal the structure of the ARIMA 
model and in the second to investigate the use of 
the  possibilities. That is why the  data that was 
used in this work can be distributed as values re-
quired for structure selection and values for mod-
el verification.

For ARIMA model structure selection, the in-
vestigation period covers a  period of 2  months, 
from 1  January to 7  February 2012. From 1440 
continuous hourly time series data points of wind 
speed, we used the first 744 to build the predic-
tion models. The remaining 696 data points were 
used for prediction and performance evaluation.

To build the best model parameters for wind 
speed forecast, three sets of data were analysed:

• the first (I) period duration is one month
(1–31 January 2012),

• the second (II) period duration is 2 weeks
(18–31 January 2012), and

• the last (III) period duration is 3 days
(29–31 January 2012).

To verify model accuracy in the yearly wind 
speed forecasting, three more periods were tak-
en to examine the model. These periods include 
spring, summer and autumn. The  wind speed 
data is taken from the year of 2012. The winter 
period remains unchanged and is used the same 
as it is in the selection of the model structure.

RESULTS AND DISCUSSION

Model parameters
To determine the  orders, p and q, the  ACF and 
PACF plots were examined. Figures 1 and 2, re-
spectively, shows the ACF and PACF graphs for 
the wind speed data.

In Fig. 1 it can be indicated from the PACF 
plot that the AR (3) model is suitable for the ob-
served data, because of the cut-off at lag 3. ACF 

Fig. 1. Autocorrelation and partial autocorrelation functions for observed wind speed data
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Fig. 2. Autocorrelation and partial autocorrelation functions for integrated wind speed data

shows the  cut-off at lag 15. That means time 
series data is non-stationary and needs to be 
integrated. Figure  2 shows ACF and PACF for 
integrated wind speed data. It is obvious that 
integration was needed to make functions sta-
tionary.

The analysed partial autocorrelation and au-
tocorrelation functions have not shown the ac-
curate values of p and q parameters. But as re-
search showed, parameter d is needed to be used 
as 1, because for our time series values stationar-
ity was needed. To find the best model, the para-
meters p and q had different values assigned. For 
each pair of parameters, a new model was con-
structed. The RMSE has been chosen to compare 
models with each other. The results are shown in 
Table 1.

As it is shown in Table 1, the  highest value 
of parameters p and q is 10 because the model 

should predict with the lowest error values and 
should be the simplest one. The higher values of 
p and q are inefficient, and the model becomes 
too complex to calculate and analyse. As it is 
shown in Table 1, the best model is ARIMA (3, 
1, 1). In addition, the  model ARIMA (6, 1, 1) 
predicts wind speed with lower errors. However, 
the model ARIMA (3, 1, 1) has a  simpler con-
struction and the difference of RMSE is not big 
enough (difference between values is 0.0367) to 
choose a more complex model.

Our previous investigation of ACF and PACF 
and RMSE analysis has shown similar results, 
i. e. ARIMA (3, 1, 1) is one of the best models 
to describe wind speed data. The higher values 
of parameters p and q would lead to a more dif-
ficult model. Because of these reasons, the ARI-
MA (3, 1, 1) model will be used in our future 
investigation.

Sa
m

pl
e 

pa
rt

ia
l a

ut
oc

or
re

la
tio

n
Sa

m
pl

e 
au

to
co

rr
el

at
io

n

Lag

Lag



50 Ernesta Grigonyte, Eglė Butkevičiūtė

Forecasting
Using the ARIMA (3, 1, 1) model, further calcula-
tions were made. Each hour, the wind speed fore-
casts were made for the next 24 hours ahead. That 
was repeated for 168 data points (7 days).

To analyse 24 hours ahead actual and predic-
ted values, the  RMSE, MAE and MAPE criteria 
were used. The forecasting performance in three 
different input periods is revealed in Table 2.

Different forecast errors are shown after 2, 
6, 12 and 24  hours. When the  ARIMA (3, 1, 1) 
model is selected, the  input data period should 
be analysed. Figures 3–5 show the main results of 
analysed input periods. Errors made from the be-
ginning until the end of the day can reach 32% of 
the worst accuracy of forecast values, especially in 
the first analysed period.

As mentioned before, to find the  best mod-
el structure and input periods, the MAE, RMSE 
and MAPE were used. Each error shows different 

changes in analysed data. All errors are shown in 
Figs. 3–5.

It is obvious that the  third period caus-
es the highest RMSE errors in Fig. 4, at least in 
the  first 12  hours, and the  second input period 
is the  best. Furthermore, in the  first two hours, 
the prediction with the first input period is even 
better than with the  second one, but errors are 
higher in the further hours.

Figures 3 and 4 show that RMSE and MAE er-
rors have very similar results. The training peri-
od was carried out for the prediction of 24 hours 
ahead. The  24-hour actual and predicted wind 
speed values of Figs.  3 and 4 were analysed: to 
8  hours ahead and to 24  hours ahead. The  dif-
ference in error value was the  lowest between  I 
and II input periods in the beginning of the fore-
casted 8 hours ahead. However, for 24-hour wind 
speed prediction, we received the  lowest RMSE 
and MAE errors when the  model was trained 

Ta b l e  2 .  RMSE, MAE, MAPE for 3 analysed input periods

Time, h
RMSE MAE MAPE

I period II period III period I period II period III period I period II period III period

2 1.6045 1.6227 1.7844 1.2120 1.2293 1.3604 0.3565 0.3616 0.4001

6 2.6658 2.6627 2.8898 2.0351 2.0100 2.1873 0.3037 0.3000 0.3265

12 3.5827 3.4922 3.6184 2.8189 2.7533 2.8274 0.5998 0.5858 0.6016

24 5.0010 4.8617 4.9910 4.1110 3.9659 4.1451 1.0027 0.9673 1.0110

Ta b l e  1 .  RMSE values for different combinations of orders AR (p) and MA (q)
Or

de
r o

f M
A 

(q
)

Order of AR (p)

0 1 2 3 4 5 6 7 8 9 10

0 3.5319 3.5025 3.4828 3.4880 3.4869 3.4865 3.4894 3.4899 3.5279 3.6654 3.6805

1 3.4683 3.6086 3.5118 3.4940 3.5014 4.9612 3.4573 3.9190 3.5665 3.6969 3.7742

2 3.5368 3.7164 3.5295 3.5053 5.0244 4.2038 3.5399 3.7605 3.7822 3.6981 3.7343

3 3.4905 3.6387 5.9987 4.2485 3.7341 6.2775 3.6042 3.9101 3.7334 3.7775 3.7167

4 3.4753 3.6843 5.9917 3.5986 3.5823 3.6008 3.6971 3.6698 3.7132 3.7595 3.9789

5 3.4858 3.6911 3.5148 3.9614 3.5713 9.1360 3.5445 4.7323 3.9738 3.7404 4.2609

6 3.4802 3.7208 3.4879 3.5412 4.0254 3.5713 3.6667 4.5943 3.9451 3.9657 5.0348

7 3.5313 3.6969 3.7632 3.5730 3.6913 3.6239 3.8356 3.7892 4.7330 5.7076 4.2781

8 3.5089 3.6586 4.0272 3.5185 3.7762 3.6557 3.9832 3.6770 3.9534 3.8107 4.0797

9 3.4451 3.6902 4.1143 3.5169 4.1921 3.6064 3.6666 3.6022 3.8641 4.5072 4.0205

10 3.4849 3.6442 5.3861 3.5357 3.6003 3.6781 3.6372 3.7121 3.8564 4.4965 4.0848
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with the  II input period. This indicates that 
the data from 18–31 January 2012 should be used 
in the ARIMA (3, 1, 1) model for winter season 
wind speed prediction. Also, this analysis has dis-
played that it is appropriate to use the  ARIMA 
model for wind speed prediction for less than 
6–8 hours ahead. Then the training period choice 
can be from two weeks to one month, and errors 
will be 1% close between.

The MAPE values are different from MAE and 
RMSE because the  analysed wind speed data is 
unstable. However, it should be noted that MAPE 
is not the best measurement criterion to be used 
for the wind speed analysis, because some of wind 
speed data values are equal or close to 0 m/s. That 
is why it is better to use RMSE and MAE instead 
of MAPE to verify if the  model is suitable for 
wind speed prediction, Fig. 5.

Figure 6 shows wind speed actual data and fo-
recast values. To see the difference of day ahead 
prediction for all day long, we looked for wind 

speed forecast 2, 6, 12 and 24 hours ahead. The su-
mmarized results showed that inaccuracy of wind 
speed prediction 2 hours ahead was 8.5%, 6 hours 
ahead 17.5%, 12 hours ahead 28.9%, and 24-hour 
prediction reached 42.4% of actual data. It can be 
confidently stated that a  longer period of wind 
speed prediction causes higher errors. In addi-
tion, wind speed prediction becomes increasin-
gly inaccurate after a  long time period. Figure 3 
shows that ARIMA forecast quality depends on 
invariability of the data. When there are sudden 
changes in the  analysed data, higher errors oc-
cur. The reason behind this is the use of previous 
wind speed values in ARIMA model prediction. 
The bias could be seen in Fig. 6. The higher values 
of parameters p and q lead to inaccurate results 
because the prediction function becomes linear.

Model suitability verification
Previous investigation covered data from the win-
ter season only. However, it is beneficial to know 

Fig. 3. RMSE every step-ahead for 3 input periods

Fig. 4. MAE every step-ahead for 3 input periods

Time, h

Time, h

RMSE step-ahead for 3 models

MAE step-ahead for 3 models
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if the  same model is able to predict wind speed 
in other seasons. Further investigation contains 
wind speed data of the  winter, spring, summer 
and autumn seasons of the year 2012, results are 
shown in Figs. 7–9.

Figures  7 and 8 show that RMSE and MAE 
depend on the season. The model predicts win-
ter, summer and autumn with similar error 
values. The  worst error values were found in 

Fig. 5. MAPE every step-ahead for 3 input periods 

MAPE step-ahead for 3 models

Time, h

Fig. 6. (a) 2 hours ahead, (b) 6 hours ahead, (c) 12 hours ahead, and (d) 24 hours ahead real and forecast wind speed
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the prediction of the spring season. The 12-hour 
ahead forecasts of the  winter season appeared 
to be similar to summer and autumn forecasts, 
while spring prediction was more rough than 
winter values, differing by approx. 1  m/s in 
terms of MAE.

Very similar results can be seen in Fig.  8; 
where the predicted values of the winter period 
in the end of the day are high and reach almost 
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Fig. 7. MAE every step-ahead for 4 seasons

Fig. 8. RMSE every step-ahead for 4 seasons

Time, h

MAE step-ahead for 3 seasons

Time, h

RMSE step-ahead for seasons

Fig. 9. MAPE every step-ahead for 4 seasons

Time, h

MAPE step-ahead for seasons
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2.5 m/s, but, as can be observed, spring period is 
by 43% worse in inaccuracy.

This could be caused by small data variations. 
In the year of 2012, the spring season was particu-
larly windy with sudden changes in wind speed. 
However, it is clear that the model ARIMA (3, 1, 
1) is not good enough for the spring data predic-
tion. This analysis has shown that finding a single 
ARIMA model for all the seasons is not enough, 
and additional structure research needs to be 
made for the spring season.

A comparison of MAPE errors in all seasons is 
shown in Fig. 9.

As it is seen in Fig. 9, the MAPE errors vary 
in different seasons. The  sudden jumps in er-
rors show that wind speed at the jump time was 
most likely equal or close to 0 m/s. Furthermore, 
this may also present the  instability of the wind 
speed data. The smallest MAPE errors are seen in 
the autumn season. This shows a small variation 
in the wind speed data. It was mentioned before 
that MAPE errors sometimes are not very appro-
priate to be used in wind speed prediction, be-
cause MAPE may not show the tendency of wind 
speed stability in seasons.

However, this investigation also shows that 
more characteristic errors in this analysis are 
RMSE and MAE.

CONCLUSIONS

This study has shown that the  best ARIMA 
structure (p, d, q) to forecast the wind speed for 
the selected Baltic region locality is (3, 1, 1). This 
structure can be used in summer, winter and, in 
particular, autumn seasons, while it should be 
changed for the spring season because of sudden 
changes in wind speed data.

Analysis of three different retrospective data 
periods revealed the  fact that a  two-week inter-
val has the lowest prediction error rates in com-
parison with one month and a 3-day period. It is 
recommended to use the ARIMA (3, 1, 1) model 
to forecast wind speed for the first 6–8 hours, be-
cause the accuracy of the method is lower when it 
is used for longer periods of time.

We suggest to choose RMSE and MAE for 
wind speed analysis and structure selection. 

MAPE is good in forecasting wind power, but less 
suitable for wind speeds.

To reduce errors obtained, the use of a hybrid 
model (ARIMA combined with other techniques) 
should be addressed.
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Ernesta Grigonytė, Eglė Butkevičiūtė

TRUMPALAIKĖ VĖJO GREIČIO PROGNOZĖ 
NAUDOJANT ARIMA MODELĮ

Santrauka
Masinė vėjo energijos integracija į elektros energeti-
kos sistemas skatina gerinti trumpalaikes vėjo greičio 
prognozes. Tai padeda perdavimo sistemos operato-
riui lengviau balansuoti sistemą ir mažinti rezervinės 
galios, reikalingos vėjo generacijos svyravimams kom-
pensuoti, poreikį. Vėjo greičiams prognozuoti dažnai 
yra taikomi statistiniai laiko eilučių metodai. Laiko ei-
lutės yra apibrėžiamos kaip chronologinė nagrinėjamo 
parametro reikšmių seka. Šiame straipsnyje analizuo-
jamas statistinis vėjo greičių trumpo prognozuojamo 
laikotarpio (iki 24  val.) modelis ARIMA (autoregre-
sinio integruoto slenkančio vidurkio modelis). Laiko 
eilučių analizėje ARIMA modelio tikslumas priklau-
so nuo prognozuojamo vidurkio. Jis remiasi progno-

zuojamų vėjo greičio duomenų priklausomybe nuo 
praeities reikšmių. ARIMA modelis yra taikytas įvai-
riems prognozavimo uždaviniams spręsti, įskaitant ir 
trumpalaikes vėjo greičių prognozes. Jis paprastai lai-
komas ankstyvuoju laiko eilučių metodu, kurio ribotu-
mas – nepakankamas vėjo greičių prognozių tikslumas 
antroje prognozavimo paros pusėje. Laikotarpiui ilgė-
jant, prognozės gaunamos su didėjančiomis paklai-
domis. Pagrindiniai darbo tikslai: 1)  rasti optimalios 
struktūros ARIMA modelį (praeities duomenų laiko-
tarpį ir eiles p, d, q); 2) patikrinti, kiek pagal tikslumo 
kriterijus yra priimtinas tos pačios struktūros ARIMA 
modelis prognozuojant skirtingiems metų sezonams 
(pavasariui, vasarai, rudeniui ir žiemai). Tikslumas 
vertintas vidutinės kvadratinės paklaidos (RMSE), 
vidutinės absoliutinės procentinės paklaidos (MAPE) 
ir vidutinės absoliutinės paklaidos (MAE) kriteri-
jais. Ieškant optimalių eilių p (autoregresijos AR) ir q 
(slenkamojo vidurkio MA), naudotos autokoreliacijos 
(ACF) ir dalinės autokoreliacijos (PACF) funkcijos. 
Laiko eilutės duomenys buvo imami iš realių mata-
vimų, užfiksuotų vienoje Baltijos regione esančioje 
vietovėje. Skaičiavimai leido rasti optimalią modelio 
struktūrą, kuri yra pakankamai tiksli 6 val. prognoza-
vimo laikotarpiui, tačiau visiems metų sezonams tos 
pačios struktūros modelį naudoti nerekomenduotina. 
Remiantis gautais rezultatais, siūlome šį modelį atei-
tyje naudoti kaip pagalbinį hibridiniame modelyje su 
kitu efektyvesniu metodu.

Raktažodžiai: ARIMA, elektros energijos sistema, 
vėjo greitis, trumpalaikė prognozė


